Synthèse sur les caractéristiques technologiques de référence des principaux bois commerciaux africains
Synthèse sur les caractéristiques technologiques de référence des principaux bois commerciaux africains

Ce document a été rédigé par :

*CNRA Abidjan, **CIRAD-Forêt
PREFACE

L’accès aux connaissances liées au patrimoine national comme international peut accélérer le processus de développement. De même, l’échange des savoirs rassemble ses acteurs et renforce l’organisation des travaux. Pour toutes ces raisons, synthétiser et diffuser l’information relève du mandat des actions de coopération.

Depuis près de trente ans, le département forestier du Cirad (Centre de coopération internationale en recherche agronomique pour le développement) a réalisé de nombreuses recherches sur les écosystèmes forestiers humides de l’Afrique centrale et occidentale. Le projet Forafri, financé par le Fonds d’aide et de coopération (France), a été lancé en 1996 pour capitaliser ces acquis et les valoriser en les transmettant aux acteurs de la filière dans cette zone. Le Cifor (Center for international forestry research), responsable d’une action identique dans les pays anglophones, est associé à Forafri.

La phase de capitalisation et de synthèse s’est concrétisée notamment par la rédaction de différents ouvrages, synthèses et publications. Un comité scientifique et technique, qui réunit des représentants du Cirad, du Cifor, de la Fao (Organisation des nations unies pour l’alimentation et l’agriculture), de l’Uicn (Union internationale pour la conservation de la nature et de ses ressources), de l’Atibt (Association tropicale internationale des bois tropicaux) et des systèmes nationaux de recherche africains (Cameroun, Congo, Côte d’Ivoire et Gabon), a assuré la validation des documents.

Les auteurs se sont attachés à rassembler les divers éléments épars des connaissances scientifiques, techniques et bibliographiques, ceci dans le but de les mettre à la disposition des utilisateurs, qu’ils soient enseignants, développeurs, chercheurs, industriels ou gestionnaires. Ce travail de synthèse a abouti à la réalisation d’une série d’ouvrages, traités par pays ou par thème.

Le bilan général des dispositifs expérimentaux concerne notamment la dynamique de croissance des peuplements arborés en Centrafrique, en Côte-d’Ivoire et au Gabon. Plusieurs thèmes sont aussi approfondis, tels que l’évaluation de la ressource, la sylviculture, l’aménagement, les méthodes statistiques d’analyse et d’interprétation de données et les caractéristiques technologiques des bois commerciaux africains.

La transmission des connaissances et des savoir-faire passe aussi par la formation dont tous ces documents pourront être des supports. C’est avec cette volonté de capitaliser, synthétiser et diffuser que ces publications sont réalisées. Nous espérons qu’elles profiteront aux recherches et actions de développement futures concourant ainsi à la gestion durable des forêts tropicales africaines.

Jacques Valeix
Directeur du Cirad Forêt
SOMMAIRE

A - PRÉSENTATION DE LA SYNTHÈSE ET ORGANISATION DES DESCRIPTIFS TECHNOLOGIQUES

PRÉAMBULE ... 3

CARACTÉRISTIQUES TECHNOLOGIQUES ÉTUDIÉES

Organisation des informations .. 4
Descriptif des caractéristiques technologiques 5

TYPOLOGIE DES USAGES ET UTILISATIONS DES BOIS 13

B - DESCRIPTIFS TECHNOLOGIQUES DES BOIS

Abura ... 15
Acajou d’Afrique ... 18
Afromosia ... 22
Aïlé ... 25
Andoung ... 28
Aningaré ... 32
Azobé ... 35
Bilinga ... 38
Bossé ... 41
Bubinga ... 44
Celtis ... 47
Dabema ... 51
<table>
<thead>
<tr>
<th>Prénom</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dibétou</td>
<td>55</td>
</tr>
<tr>
<td>Doussié</td>
<td>58</td>
</tr>
<tr>
<td>Ebiara</td>
<td>62</td>
</tr>
<tr>
<td>Ekaba</td>
<td>65</td>
</tr>
<tr>
<td>Ekoune</td>
<td>68</td>
</tr>
<tr>
<td>Faro</td>
<td>71</td>
</tr>
<tr>
<td>Framiré</td>
<td>74</td>
</tr>
<tr>
<td>Fuma</td>
<td>77</td>
</tr>
<tr>
<td>Ghéombi</td>
<td>81</td>
</tr>
<tr>
<td>Gombé</td>
<td>84</td>
</tr>
<tr>
<td>Iatandza</td>
<td>87</td>
</tr>
<tr>
<td>Ilomba</td>
<td>90</td>
</tr>
<tr>
<td>Iroko</td>
<td>93</td>
</tr>
<tr>
<td>Izombé</td>
<td>96</td>
</tr>
<tr>
<td>Kanda</td>
<td>99</td>
</tr>
<tr>
<td>Kondroti</td>
<td>102</td>
</tr>
<tr>
<td>Kosipo</td>
<td>105</td>
</tr>
<tr>
<td>Kotibé</td>
<td>108</td>
</tr>
<tr>
<td>Lati</td>
<td>111</td>
</tr>
<tr>
<td>Limba</td>
<td>114</td>
</tr>
<tr>
<td>Limbalı</td>
<td>118</td>
</tr>
<tr>
<td>Longhi</td>
<td>121</td>
</tr>
<tr>
<td>Makoré</td>
<td>124</td>
</tr>
<tr>
<td>Mansonia</td>
<td>127</td>
</tr>
<tr>
<td>Moabi</td>
<td>130</td>
</tr>
<tr>
<td>Movingui</td>
<td>133</td>
</tr>
<tr>
<td>Naga</td>
<td>136</td>
</tr>
<tr>
<td>Niangon</td>
<td>139</td>
</tr>
<tr>
<td>Niové</td>
<td>142</td>
</tr>
<tr>
<td>Obéché</td>
<td>145</td>
</tr>
<tr>
<td>Okoumé</td>
<td>148</td>
</tr>
<tr>
<td>Olon</td>
<td>151</td>
</tr>
<tr>
<td>Ovengkol</td>
<td>154</td>
</tr>
<tr>
<td>Ozigo</td>
<td>157</td>
</tr>
<tr>
<td>Padouk</td>
<td>160</td>
</tr>
<tr>
<td>Sapelli</td>
<td>163</td>
</tr>
<tr>
<td>Sipo</td>
<td>166</td>
</tr>
<tr>
<td>Tali</td>
<td>169</td>
</tr>
<tr>
<td>Tchitola</td>
<td>172</td>
</tr>
<tr>
<td>Tiama</td>
<td>175</td>
</tr>
<tr>
<td>Tola</td>
<td>178</td>
</tr>
</tbody>
</table>

C - CONCLUSIONS ET PERSPECTIVES

PRINCIPALES RÉFÉRENCES BIBLIOGRAPHIQUES UTILISÉES
A - PRÉSENTATION DE LA SYNTHÈSE ET ORGANISATION DES DESCRIPTIFS TECHNOLOGIQUES

PRÉAMBULE

Depuis leur création, les laboratoires d'étude des bois du CTFT d’abord, et du CIRAD-Forêt ensuite, ont déterminé les caractéristiques technologiques de plus de 1000 espèces tropicales en réalisant plusieurs centaines de milliers d’essais. Aujourd’hui, ces résultats sont organisés en une base de données gérée à l’aide d’un système de gestion de bases de données relationnelles, et facilement accessible et utilisable par les chercheurs du CIRAD-Forêt.

Un des objectifs de cette base de données est de constituer un support pour l’étude des relations entre les propriétés des bois et les usages des produits forestiers. Ces études ont pour but d’optimiser les demandes de valorisation d’une ressource donnée tant du point de vue des forestiers ou des sylviculteurs que du point de vue des industries utilisatrices. Ceci nécessite la mise en place d’une démarche d’analyse des données couplée à une connaissance approfondie des besoins des utilisateurs et des marchés.

Par ailleurs, l’évolution des matériels et des besoins nécessite une recherche méthodologique sur les protocoles d’essais à mettre au point ou à améliorer dans le contexte particulier des pays en développement.

La fonction de mémoire collective de cette base de données par rapport à l’activité Sciences et Technologie du Bois du CIRAD-Forêt reste primordiale. Ainsi, près de 2000 séries d’essais complets ont permis de déterminer les caractéristiques technologiques de plus de 500 espèces d’Afrique tropicale continentale, selon la répartition par pays suivante :

La base de données constitue un véritable “réservoir d’informations” pour alimenter des produits documentaires de vulgarisation sur la qualité des bois tropicaux, produits qui peuvent prendre différentes formes :
- fiches techniques par essence et monographies,
- guides techniques et atlas de bois tropicaux,
- méméntos,
- logiciels.

Durant les dernières décennies, à la demande de différents opérateurs de la filière-bois, le CIRAD-Forêt a été régulièrement amené à concevoir de nombreux produits documentaires de ce type, en particulier sur les bois africains : l’Atlas des bois tropicaux d’Afrique, les fiches techniques “Promotion des bois tropicaux africains - Essences nouvelles”, les fiches ’'Nouvelles essences commercialisables d’Afrique”, les présentations graphiques des caractères technologiques des principaux bois tropicaux africains et des bois du Burundi (cf. références bibliographiques).
CARACTÉRISTIQUES TECHNOLOGIQUES ÉTUDIÉES

ORGANISATION DES INFORMATIONS

Les descriptifs technologiques ont été établis pour cinquante trois des principales essences tropicales africaines qui sont (ou qui ont été) couramment commercialisées, ou qui, potentiellement, présentent un intérêt technologique particulier. D'autres essences auraient pu être décrites.

Ces descriptifs ne sont en aucun cas exhaustifs et fournissent des informations de base sur les principales caractéristiques technologiques retenues.

Ces informations sont regroupées en différentes rubriques organisées de la façon suivante :

* Dénominations : botaniques, commerciales et vernaculaires.

* Description du bois.

* Principales propriétés physiques et mécaniques : masse volumique à l'état sec, densité basale, dureté Morin, point de saturation des fibres, retrait volumique total, retrait tangentiel total, retrait radial total, sensibilité aux variations d'humidité de l'air, stabilité en service, contrainte de rupture en compression parallèle, contrainte de rupture moyenne en flexion statique, module d'élasticité longitudinal.

* Durabilité et imprégnabilité :
 - résistance naturelle aux champignons,
 - résistance naturelle aux lyctus,
 - résistance naturelle aux termites,
 - imprégnabilité.

* Caractéristiques de mise en œuvre : sciage, tranchage et déroulage, séchage, assemblage, finition

* Conclusions et utilisations.

L’explication du contenu de chacune de ces rubriques est détaillée ci-après.
DESCRIPTIF DES CARACTÉRISTIQUES TECHNOLOGIQUES

Dénominations

Botaniques

Le (ou les) nom(s) botanique(s) mentionné(s) (une essence commerciale peut regrouper plusieurs espèces botaniques du même genre, voire même des espèces de genre différents) sont ceux actuellement en vigueur au niveau international. Ils sont systématiquement associés aux noms d’auteurs correspondants qui figurent en abrégé et à la famille à laquelle appartient le genre.
Si les espèces mentionnées ont récemment changé d’appellation botanique, les anciennes appellations (ou synonymes) sont mentionnées.

Commerciales

Les appelations commerciales les plus courantes ont été mentionnées, associées au pays où elles sont utilisées. Un fichier beaucoup plus complet sur les noms vernaculaires des bois tropicaux est en cours de constitution au Programme Bois du CIRAD-Forêt.

Description du bois

Dans cette rubrique sont données des informations sur la couleur du bois (aubier, duramen) ainsi que sur sa structure :
- fil (= direction générale des fibres) : droit, contrefil léger et/ou occasionnel, contrefil marqué et/ou fréquent,
- grain (= impression visuelle donnée par la taille et la disposition des vaisseaux) : grossier, moyen, fin,
- maillure (= aspect du bois lié à la présence des rayons sur la face orientée sur quartier) : fine, moyenne, large.
De plus, l’observation à la loupe (grossissement x15) du bois fournit des informations sur le plan ligneux (= ensemble des caractères de structure du bois tenant à la nature, à la forme et au groupement des cellules constitutives du bois ; ces caractères sont sensiblement constants pour une essence déterminée) :
- fréquence, taille et disposition des pores,
- structure et disposition du parenchyme,
- fréquence, nombre et organisation des rayons,
- présence éventuelle d’éléments particuliers (canaux sécréteurs à oléorésine, laticifères, cellules à mucilage ...).
Principales propriétés physiques et mécaniques

Par souci de simplicité, les valeurs qui ont été fournies dans cette rubrique correspondent à des moyennes par essence obtenues à partir des résultats de séries d’essais réalisés en laboratoire (cinq séries au minimum pour pouvoir qualifier une essence). Il est nécessaire de préciser que les propriétés des bois sont éminemment variables et que les valeurs moyennes indiquées ne constituent qu’un premier niveau d’information qui devra être complété si besoin est par d'autres paramètres (écart-type, quantile particulier) lors d’utilisations particulières (calculs de structure par exemple). Les propriétés dont le libellé est suivi d’un astérisque (masse volumique à l’état sec, dureté, contrainte de rupture en compression parallèle, contrainte de rupture moyenne en flexion statique, module d’élasticité longitudinal) ont été déterminées sur des bois stabilisés à 20°C et 65% d’humidité relative de l’air (norme française NF B 51-002), soit une humidité théorique du bois voisine de 12%.

En pratique, comme cela a été observé sur les essences tropicales étudiées au CIRAD-Forêt, et compte tenu du phénomène d’hystérésis entre les phases d’absorption et de désorption du bois, l’humidité d’équilibre d’échantillons initialement verts puis stabilisés est supérieure à 12% ; elle est le plus souvent comprise entre 13 et 15%.

Masse volumique à l’état sec

La masse volumique (ou la densité) à 12% est une caractéristique technologique de base, la première à déterminer pour qualifier un bois ; cette propriété est corrélée, plus ou moins étroitement, avec les principales propriétés physiques et mécaniques du bois ainsi qu’avec certaines caractéristiques de mise en œuvre (durabilité naturelle, imprégnabilité...) ; elle est la variable physique explicative majeure de la variabilité totale des constantes élastiques.

Suivant la norme NF B 51-005 (sept.1985), la mesure de masse volumique à 12% exige l'utilisation d'un voluménomètre à mercure. Aujourd’hui, cette caractéristique est obtenue simultanément au module d'élasticité longitudinal par une méthode acoustique mise au point au CIRAD-Forêt. Les valeurs obtenues sont directement comparables à celles obtenues avec la méthode standard.

Classes de masse volumique

<table>
<thead>
<tr>
<th>MV (kg/m³)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 500</td>
<td>bois très léger</td>
</tr>
<tr>
<td>500 - 650</td>
<td>bois léger</td>
</tr>
<tr>
<td>650 - 800</td>
<td>bois mi-lourd</td>
</tr>
<tr>
<td>800 - 950</td>
<td>bois lourd</td>
</tr>
<tr>
<td>> 950</td>
<td>bois très lourd</td>
</tr>
</tbody>
</table>

Densité basale

La densité basale (grandeur sans unité) d’un échantillon est le rapport entre sa masse anhydre (obtenue après stabilisation à 103°C) et son volume saturé. Cette propriété est directement liée à la densité du bois moyennant une correction prenant en compte l'humidité, le point de saturation des fibres et le coefficient de retrait volumique. La détermination de cette caractéristique présente l'avantage de ne pas nécessiter l'utilisation d'une pièce conditionnée ou d'une étuve réglée en température et en humidité.
Dureté Monnin

Cet essai permet de déterminer la résistance à la pénétration sur la face radiale du bois, d’un cylindre métallique de rayon donné, appliqué suivant une génératrice, sous un effort continu.

Il est réalisé sur des éprouvettes de section carrée de 20mm de côté et d’au minimum 100mm de longueur parallèlement au fil du bois. Le protocole d’essai est défini dans la norme NF B 51-013.

La dureté est une propriété particulièrement importante à connaître lorsqu’il est envisagé une utilisation des bois sous forme de parquet.

Classes de dureté

<table>
<thead>
<tr>
<th>D</th>
<th>Caractéristique</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1,5</td>
<td>bois très tendre</td>
</tr>
<tr>
<td>1,5 < D < 3</td>
<td>bois tendre</td>
</tr>
<tr>
<td>3 < D < 6</td>
<td>bois mi-dur</td>
</tr>
<tr>
<td>6 < D < 9</td>
<td>bois dur</td>
</tr>
<tr>
<td>D > 9</td>
<td>bois très dur</td>
</tr>
</tbody>
</table>

Point de Saturation des Fibres

Dans un bois vert, une partie de l’eau remplit plus ou moins complètement les vides cellulaires et intercellulaires. L’évacuation de cette eau libre s’effectue sans retrait du bois.

Lorsque l’eau libre a entièrement disparu, le bois ne contient plus que de l’eau liée qui imprègne les membranes des cellules, et dont le départ lors du séchage va occasionner des phénomènes de retraits à l’origine de déformations du bois.

Le Point de Saturation des Fibres (ou PSF) correspond au taux d’humidité du bois saturé en eau liée, taux en dessous duquel le bois va commencer à sécher en se contractant. Le PSF varie de 20 à 40% suivant les essences, mais se situe le plus souvent aux environ de 30%.

Classes de Point de Saturation des Fibres (= PSF)

PSF < 25 %	PSF faible
25 < PSF < 35 %	PSF moyen
PSF > 35 %	PSF élevé

Retrait volumique total

Lorsqu’une pièce de bois sèche en-dessous de son Point de Saturation des Fibres, son volume diminue. Si elle se réhumidifie, son volume augmentera jusqu’au PSF. Pour quantifier ces variations de volume, on utilise le retrait volumique (noté B) qui est la variation de volume d’une éprouvette normalisée (cube de 20 mm de côté) passant de l’état saturé à l’état anhydre (protocole d’essai défini dans la norme NF B 51-006 de septembre 1985). $B = [(V_s - V_o)/V_s] \times 100$

Classes de retrait volumique

B < 9 %	retrait faible
9 % < B < 13 %	retrait moyen
B > 13 %	retrait fort

Retrait tangentiel total et retrait radial total (retraits linéaires transverses)

Jusqu’au point de saturation des fibres, le bois ne se rétracte pas en séchant ; en revanche, en dessous de ce seuil, il est soumis à des variations dimensionnelles quand son humidité varie.

Le retrait du bois en dessous du PSF intervient suivant les trois directions du bois : longitudinale,
tangentielle et radiale. Le retrait longitudinal est très faible par rapport aux deux autres, de l'ordre de quelques dixièmes de pour-cent, mais il peut avoir une influence notable sur les variations dimensionnelles de pièces de grandes longueurs. Très peu de données sont disponibles sur cette caractéristique qui reste délicate à mesurer en laboratoire.

Le retrait tangential total et le retrait radial total sont habituellement déterminés pour qualifier le comportement du bois lors du séchage ou plus généralement lors de variations d'humidité.

Le retrait total R par rapport à l'état saturé (R_t pour le retrait tangential ou R_r pour le retrait radial) est donné par la relation :

$$ R = \frac{(D_s-D_0)}{D_s} \times 100 $$

où D_s et D_0 sont respectivement les dimensions des échantillons dans la direction considérée à l'état saturé puis à l'état anhydre.

L'essai est réalisé sur des plaquettes carrées de 40mm à 50mm de côté et 10mm d'épaisseur (parallèlement au fil du bois). Le protocole d'essai est défini dans la norme NF B 51-006 (sept. 1985).

Classe de retraits linéaires transverses

<table>
<thead>
<tr>
<th>R_t</th>
<th>Description</th>
<th>R_r</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$< 6.5%$</td>
<td>retrait faible</td>
<td>$< 3.8%$</td>
<td>retrait faible</td>
</tr>
<tr>
<td>$6.5% < R_t < 10%$</td>
<td>retrait moyen</td>
<td>$3.8% < R_r < 6.5%$</td>
<td>retrait moyen</td>
</tr>
<tr>
<td>$R_t > 10%$</td>
<td>retrait fort</td>
<td>$R_r > 6.5%$</td>
<td>retrait fort</td>
</tr>
</tbody>
</table>

Sensibilité aux variations d'humidité de l'air et stabilité en service

Les essais de sensibilité des bois aux variations d'humidité (= H), essais non standards mis au point au CIRAD-Forêt, permettent de quantifier l’aptitude d’un bois à perdre ou à reprendre de l’humidité lors de changements cycliques des conditions ambiantes. Ce paramètre donne des informations complémentaires par rapport à celles fournies par les retraits de séchage.

Les essais sont réalisés sur des éprouvettes minces orientées sur quartier ($L = 10$ cm ; $l = 6$ cm ; $e = 0.5$ cm) ; ces plaquettes subissent trois cycles de stabilisation sous deux conditions de température et d'hygrométrie différentes, selon le schéma suivant :

<table>
<thead>
<tr>
<th>1er cycle</th>
<th>2me cycle</th>
<th>3re cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etat 1.1</td>
<td>Etat 2.1</td>
<td>Etat 1.2</td>
</tr>
<tr>
<td>$T=25°C$</td>
<td>\pm $T=35°C$</td>
<td>$T=25°C$</td>
</tr>
<tr>
<td>HR=65%</td>
<td>HR=85%</td>
<td>HR=65%</td>
</tr>
<tr>
<td>f</td>
<td>$T=25°C$</td>
<td>$T=35°C$</td>
</tr>
<tr>
<td>HR=65%</td>
<td>HR=85%</td>
<td>HR=65%</td>
</tr>
<tr>
<td>f</td>
<td>HR=85%</td>
<td>HR=85%</td>
</tr>
<tr>
<td>Etat 1.3</td>
<td>Etat 2.3</td>
<td>stabilisation</td>
</tr>
<tr>
<td>$T=25°C$</td>
<td>\pm $T=35°C$</td>
<td>f</td>
</tr>
<tr>
<td>HR=65%</td>
<td>HR=85%</td>
<td>\rightarrow</td>
</tr>
<tr>
<td>HR=65%</td>
<td>HR=85%</td>
<td>l'état anhydre</td>
</tr>
</tbody>
</table>

Pour chacun des cycles, on détermine les variations d'humidité des plaquettes entre l'état 1.* et l'état 2.* ; la moyenne de ces variations sur les trois cycles permet de définir la sensibilité du bois aux variations d'humidité.

La stabilité en service est obtenue en multipliant H par le coefficient de retrait volumique v. Elle constitue ainsi un paramètre indicatif du comportement du bois lors de variations de son taux d’humidité prenant simultanément en compte sa sensibilité aux variations d’humidité et sa rétractilité durant le séchage.

Classes de sensibilité aux variations d'humidité et de stabilité en service

<table>
<thead>
<tr>
<th>H</th>
<th>Description</th>
<th>$Stab.$</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$< 3%$</td>
<td>Sensibilité faible</td>
<td>< 1.4</td>
<td>Bois stable</td>
</tr>
<tr>
<td>$3% < H < 3.6%$</td>
<td>Sensibilité moyenne</td>
<td>$1.4 < Stab. < 2$</td>
<td>Bois moyennement stable</td>
</tr>
<tr>
<td>$H > 3.6%$</td>
<td>Sensibilité élevée</td>
<td>> 2</td>
<td>Bois peu stable</td>
</tr>
</tbody>
</table>
Contrainte de rupture en compression parallèle
La contrainte de rupture en compression parallèle \(C_{12} \) correspond à la contrainte (exprimée en MPa) qu’il est nécessaire d’appliquer suivant le sens parallèle au fil du bois pour obtenir la rupture d’une éprouvette de 4 cm² de section (dimensions de l’éprouvette : 6 x 2 x 2 cm).

Classes de contrainte de rupture en compression parallèle
\[
\begin{align*}
C_{12} &< 45 \text{ MPa} \quad : \text{Contrainte faible} \\
45 \text{ MPa} < C_{12} &< 75 \text{ MPa} \quad : \text{Contrainte moyenne} \\
C_{12} &> 75 \text{ MPa} \quad : \text{Contrainte élevée}
\end{align*}
\]

Contrainte de rupture en flexion statique
La contrainte de rupture en flexion statique \(F_{12} \) correspond à la contrainte (exprimée en MPa) qu’il est nécessaire d’appliquer au milieu d’une éprouvette reposant sur deux appuis pour arriver à sa rupture (dimensions de l’éprouvette : 34 x 2 x 2 cm).

Classes de contrainte de rupture en flexion statique
\[
\begin{align*}
F_{12} &< 85 \text{ MPa} \quad : \text{Contrainte faible} \\
85 \text{ MPa} < F_{12} &< 140 \text{ MPa} \quad : \text{Contrainte moyenne} \\
F_{12} &> 140 \text{ MPa} \quad : \text{Contrainte élevée}
\end{align*}
\]

Module d’élasticité longitudinal (= module d’Young)
Le module d’élasticité longitudinal \(E_L \) est une propriété de première nécessité technologique pour les emplois en structure où les pièces de bois sont fréquemment sollicitées en flexion statique suivant leur plus grande direction, parallèlement aux fibres.

Le module d’élasticité longitudinal du bois stabilisé à une humidité théorique de 12% est une caractéristique mécanique de référence. Cette propriété caractérise la proportionnalité entre la charge et la déformation. Elle constitue un indicateur de la rigidité du bois.

Classes de module d’élasticité longitudinal
\[
\begin{align*}
E_L &< 10 000 \text{ MPa} \quad : \text{Module faible} \\
10 000 \text{ MPa} < E_L &< 15 000 \text{ MPa} \quad : \text{Module moyen} \\
E_L &> 15 000 \text{ MPa} \quad : \text{Module élevé}
\end{align*}
\]

Durabilité et impregnanabilité
La durabilité naturelle d’une essence est son aptitude à résister à l’attaque des agents biologiques d’altération : champignons de pourriture, termites, insectes, foreurs marins.

Résistance naturelle aux champignons
La résistance des bois aux champignons est déterminée sur des échantillons de dimensions normalisées mis en présence de souches de champignons dans des conditions ambiantes contrôlées. Ces essais durent plusieurs mois.

L’intensité de l’attaque des champignons, et par conséquent la résistance naturelle des bois, est quantifiée par la perte de masse des échantillons à laquelle est appliquée un coefficient correcteur dépendant de l’humidité des bois.
La résistance des bois est testée sur 4 souches de champignons :

- *Coriolus versicolor* : pourriture fibreuse ;
- *Pycnoporus sanguineus* : pourriture fibreuse ;
- *Antrodia sp.* : pourriture cubique ;

Le protocole expérimental de cet essai est défini dans la norme EN 113.

La norme NF EN 350-1 définit des classes de durabilité naturelle du bois vis à vis des champignons lignivores, chaque classe correspondant à un niveau de durabilité :

Bois très durables : classe 1
Bois durables : classe 2
Bois moyennement durables : classe 3
Bois faiblement durables : classe 4
Bois non durables : classe 5

Remarque : la résistance des bois concerne celle du bois parfait ; l'aubier doit toujours être considéré comme présentant une durabilité inférieure à celle du duramen vis-à-vis des insectes et des champignons.

Résistance naturelle aux Lyctus

Les Lyctus sont de petits coléoptères xylophages dont les larves vivent dans l'aubier (ou même parfois dans le bois parfait) de certaines essences feuillées d'origine tempérée ou tropicale. Les œufs sont déposés dans la lumière des vaisseaux (pores) d'où, après éclosion, des larves vont se développer et progresser à l'intérieur du bois. Le cycle est de durée variable : parfois moins de six mois en milieu tropical humide, huit à douze mois dans les pièces chauffées normalement, deux ans lorsque le bois est entreposé dans des locaux non chauffés ou stockés à l'extérieur. De ce fait, il est souvent très difficile de savoir à partir de quel moment le bois a été infesté.

Les bois sciés ou mis en œuvre ne sont attaqués par le Lyctus que s'ils présentent encore des parties aubieuses, une teneur en amidon suffisante, et si les vaisseaux sont suffisamment gros pour permettre la ponte. Quasiment tous les aubiers des bois tropicaux sont attaqués. Certaines espèces tropicales riches en parenchyme de réserve sont attaquées dans la totalité du bois.

Une essence est classée sensible si elle est attaquée au cours de l’essai mené en laboratoire ; dans le cas contraire, elle est considérée comme résistante (NF EN 350-1).

Résistance naturelle aux termites

Les conditions de détermination de la résistance des bois aux termites sont analogues à celles de la résistance aux champignons. Des échantillons de dimensions normalisées sont mis en présence de termites. L'intensité de l'attaque des termites, et par conséquent la résistance naturelle des bois, est quantifiée à partir de l'appréciation de la profondeur de pénétration des termites dans l'échantillon. Le protocole expérimental de cet essai est donné dans la norme EN 118 ; il conduit à obtenir une échelle d'attaque de 0 à 4.

A partir de cette échelle d'attaque, la norme NF EN 350-1 définit 3 classes de durabilité naturelle vis à vis des termites :

- Bois durables : cotation moyenne : 0 - 1
- Bois moyennement durables : cotation moyenne : 2
- Bois sensibles : cotation moyenne : 3 - 4
Imprégnabilité

L'imprégnabilité d'un bois correspond à son aptitude à être imprégné par un produit de préservation. La norme NF EN 350-2 définit quatre classes d'imprégnabilité :

<table>
<thead>
<tr>
<th>Classe d'imprégnabilité</th>
<th>Descriptions</th>
<th>Explication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Imprégnable</td>
<td>Facile à traiter, le bois scié peut être pénétré complètement avec un traitement sous pression sans difficulté</td>
</tr>
<tr>
<td>2</td>
<td>Moyennement imprégnable</td>
<td>Assez facile à traiter ; habituellement, une pénétration complète n’est pas possible, mais après un traitement sous pression durant deux ou trois heures, une pénétration latérale de plus de 6mm peut être atteinte dans les résineux ; dans les feuillus, une large proportion de vaisseaux peut être pénétrée.</td>
</tr>
<tr>
<td>3</td>
<td>Peu imprégnable</td>
<td>Difficile à traiter ; un traitement sous pression durant trois ou quatre heures ne peut pas donner plus de 3 à 6mm de pénétration latérale.</td>
</tr>
<tr>
<td>4</td>
<td>Non imprégnable</td>
<td>Virtuellement impossible à traiter ; peu de produit de préservation absorbé même après 3 ou 4 heures de traitement sous pression ; pénétrations latérales et longitudinales très faibles.</td>
</tr>
</tbody>
</table>

Caractéristiques de mise en œuvre

Sciage

Les informations fournies correspondent au cas de scieries dont le niveau de production peut être qualifié d’industriel. Le sciage est évalué sur une scie de tête avec une vitesse d’aménage de 25 à 30 m/mn, et par une durée de vie de lame de quatre heures. Le sciage est évalué qualitativement (sciage facile, difficile, ...).

Un effort de coupe suffisant peut être obtenu avec des lames minces adaptées et par une augmentation de la puissance des équipements et de l’inertie des volants du matériel de sciage.

L’éventuel effet désaffûtant du bois, lié à son taux de silice élevé ou à sa dureté, est aussi mentionné.

Tranchage et déroulage

Toutes les essences peuvent être théoriquement déroulées ou tranchées après un traitement thermique adéquat et un réglage optimum des paramètres de coupe. Dans les descriptifs techniques, l’intérêt industriel de ces opérations de transformation est indiqué.

* Les essences habituellement recherchées en déroulage sont tendres à mi-dures, les grumes étant bien formées et sans défaut afin d'obtenir un bon rendement. Le bois doit de plus avoir un bon comportement au séchage afin de limiter les risques de fentes et de déformations des placages. Il est éventuellement indiqué si un déroulage à froid est possible ou si un étuvage est préconisé. Les paramètres d’étuvage (eau chaude, vapeur, température, durée) dépendent de la nervosité du bois, de la fragilité de sa couleur, et du diamètre habituel des billes à dérouler.
* Pour le tranchage, les bois recherchés doivent présenter des qualités esthétiques bien définies : couleur, figuration, finesse du grain, aspect rubané.

** Séchage**
Le comportement général du bois durant le séchage à l’air ou en séchage artificiel est mentionné. Le séchage est évalué qualitativement (vitesse, risques de fentes, risques de déformations, risques de collapse, risques de cémentation). Si nécessaire, les précautions d’usage pour assurer une bonne qualité de séchage sont rappelées.

Assemblage
Pour le clouage, il est important de savoir si des avant-trous sont nécessaires afin de limiter les risques de fente du bois, et de connaître l’aptitude d’un bois à retenir un clou (bonne ou mauvaise tenue à l’arrachement).

Collage
Compte tenu des avancées technologiques réalisées dans le domaine de la fabrication des colles, on peut considérer qu’actuellement, quasiment toutes les essences peuvent être collées. Le choix de la colle dépend des utilisations envisagées. En pratique, certains bois denses et à retrait élevé sont parfois délicats à coller, notamment pour des utilisations en lamellé-collé.
Au niveau industriel, il apparaît très souvent que les problèmes qui se posent ne sont pas liés à la nature de l’essence ni au choix de la colle, mais à la préparation des bois et aux conditions de fabrication en atelier : humidité initiale des bois, conditions de température et d’humidité ambiantes, qualité et propreté de l’état de surface, uniformité de l’encollage.

Finition
Les opérations de finition (ponçage, vernissage, peinture) donnent des résultats variables suivant les essences. Ces résultats dépendent notamment de la finesse du grain du bois, de l’éventuelle présence et de l’intensité du contrefil. Les bois présentant un grain grossier nécessitent souvent un bouche-porage préalable à l’application de produits de finition.

Conclusions et utilisations
Les utilisations classiques de chaque essence sont mentionnées. La liste indiquée ne saurait être considérée comme limitative, le marché mondial du bois, toujours fluctuant, pouvant favoriser l’émergence de nouvelles utilisations pour des essences jusqu’alors peu commercialisées. Cette liste, construite à partir du tableau générique présenté ci-après, permet cependant de préciser les types d’emploi pour lesquels chaque essence est adaptée.
TYPOLOGIE DES USAGES ET UTILISATIONS DES BOIS	

(excepté bois-énergie)	
BOIS DE TRITURATION	
Pâtes / Papiers	
Panneaux de particules : classique, waferboard, Oriented Strand Board	
Panneaux de fibres, dont Medium Density Fiberboard	
Panneaux divers : bois-ciment, bois-PVC ...	
BOIS RONDS (OU BOIS DE SERVICE)	
Tuteurs, piquets, pieux, perches	
Poteaux électriques, téléphoniques, de mine ; glissières de sécurité	
Structures en bois rond : pilotis et piliers immersés, pontons, hangars, habitations, aires de jeu	
BOIS D’OEUVRE	
Bois sciés ou équarris	
Structure : Ossature, charpentes, Maison Ossature Bois, lamellé-collé, Habitation Légère de Loisir	
Utilisations extérieures	
Menuiseries extérieures, dont revêtement extérieur et couverture	
Aménagements extérieurs : clôtures, barrières, portails, terrasses, vérandas, pergolas	
Bois d’environnement : ponts/passerelles/platelages, aménagements de berges, aires de jeu et de loisir, mobilier et aménagement urbain, murs anti-bruit, abris/cabines/bungalows, signalétique/supports, bois sous rails	
Construction hydraulique lourde : portes d’écluses, ouvrages portuaires (appontements, défenses de quai, wharf ...)	
Utilisations intérieures	
Menuiserie intérieure, dont escaliers	
Produits d’agencement et décoration intérieur, dont lambris, parquet, moulures panneaux décoratifs	
Ameublement	
Ebénisterie, marqueterie, brosserie, coutellerie, instruments de musique, sculpture, tournage	
Divers : jouets, articles de sport, crayons, outils, manches d’outils	
Utilisations spéciales	
Fonds de camion ou de wagon	
Construction navale	
Bois Alimentaire-Santé : emballages et suremballages, palettes et caisses-palettes, conteneurs (maritime), cuves et produits de tonnellerie	
Bois tranchés ou déroulés	
Contreplaqué : tous plis, âmes, faces	
Placages décoratifs	
Parallel Strand Lumber, Laminated Veneer Lumber, Laminated Strand Lumber, Oriented Strand Lumber	
Allumettes	
- B -

DESCRIPTIFS
TECHNOLOGIQUES
DES BOIS
ABURA

DENOMINATIONS

BOTANIQUES
Hallea ciliata Leroy, H. stipulosa Leroy
Famille des Rubiacées

VERNACULAIRES ET COMMERCIALES
Cameroun, Gabon : Elelom, Bahia
Congo : Vuku
Côte d'Ivoire : Bahia
Ghana, Royaume-Uni : Abura
Nigéria : Abura

DESCRIPTION DU BOIS

Le bois parfait de l'Abura a une teinte claire qui peut varier de brun rosé à jaunâtre. Les débits sont d'aspect terne et en général uni, aussi bien sur dosse que sur quartier. Occasionnellement, on peut observer quelques veines brunes plus foncées. L'aubier est difficilement différenciable du bois parfait ; lorsqu'il est apparent, sa couleur est brun-grisâtre clair. Le grain est fin. Le fil est droit.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

L’Abura est un bois léger et tendre. Ses retraits linéaires transverses sont moyens ainsi que son retrait volumique. Ses résistances mécaniques sont faibles à moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 550 à 600 kg/m³
Dureté Monnin* : 2
Point de saturation des fibres : 41 %
Retrait volumique total : 13 %
Retrait tangentiel total : 8,9 %
Retrait radial total : 4,3 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : moyenne
Contrainte de rupture en compression parallèle* : 46 MPa
Contrainte de rupture en flexion statique* : 87 MPa
Module d'élasticité longitudinal* : 8 900 MPa
DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
L’Abura résiste très mal aux attaques de champignon et les risques de dégradation sont donc importants dès que les conditions favorables à leur développement sont réunies (en particulier, bois en contact avec des sources d'humidité). Cette essence est considérée comme non durable vis à vis des champignons lignivores (classe de durabilité : 5) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
L’aubier et le duramen étant souvent peu distincts, il faut donc considérer que toute la masse du bois est susceptible d’être attaquée par les Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l’espèce Reticulitermes santonensis est faible. Cette essence est considérée comme sensible aux termites (classe de durabilité : S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme moyennement imprégnable (classe d’imprégnabilité : 2) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
En raison de son taux de silice parfois élevé, l’Abura est un bois abrasif. Cette abrasivité est cependant très variable selon les grumes. Par précaution, il est préférable d’utiliser de l’outillage stellité ou à mise rapportée de carbure de tungstène. Les rendements au sciage sont généralement élevés.

TRANCHE ET DÉROULAGE
L’Abura convient très bien à la fabrication de placages et de contreplaqués. A titre indicatif, un étuvage à l’eau chaude de 48 heures à 80°C ou à la vapeur de 24 heures à 36 heures est suffisant pour des billes de dimension courante. L’opération de déroulage ne présente aucune difficulté particulière. L’Abura se déroule bien dans des conditions identiques à celles du déroulage de l’Okoumé. Les placages sèchent bien, sans déformation et sans formation de poche d'eau. L’Abura se tranche bien, sans difficulté particulière, mais les placages obtenus sont brun terne, unis et non figurés. Ils sont donc le plus souvent utilisés sous forme teintée.
SÉCHAGE
L'Abura sèche très bien, rapidement et sans difficulté, aussi bien à l'air libre qu'en séchoir artificiel. Les risques de fentes et de déformations sont très faibles.

USINAGE
Du fait de son fil droit et régulier, de l'absence presque totale de contrefil et de sa faible dureté, l'Abura est un bois qui se travaille sans difficulté.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis s'enfoncent facilement et présentent une bonne tenue. L'Abura se colle sans difficulté avec tous les types de colle couramment employés dans l'industrie du bois.

FINITION
Compte tenu de son grain fin, ce bois présente un excellent état de surface après ponçage, notamment pour les utilisations en ameublement. L'Abura se teinte très aisément, souvent dans le but de lui donner un aspect merisier ou noyer très recherché. Il se peint et se vernit très facilement avec les produits couramment employés dans l'industrie.

CONCLUSIONS ET UTILISATIONS
L'Abura convient particulièrement à la fabrication de meubles, depuis l'ameublement rustique jusqu'au mobilier de style ; il convient notamment très bien pour fabriquer des pièces tournées. Il est aussi utilisé en agencement de magasins (fabrication de rayonnages et d'étagères), en menuiserie intérieure (portes intérieures, rampes d'escalier), et pour la fabrication de moulures et de baguettes d'encadrement. Par ailleurs, l'Abura constitue un bonne essence de déroulage et donne des contreplaqués de qualité satisfaisante à condition que les grumes aient été protégées contre les attaques d'insectes et des champignons. Il pourrait être utilisé pour la fabrication de crayons.
ACAJOU D’AFRIQUE

DÉNOMINATIONS

BOTANIQUES
Khaya ivorensis A. Chev., K. anthotheca C. DC., K. grandifoliola C. DC.
Famille des Méliacées

VERNACULAIRES ET COMMERCIALES

Khaya ivorensis :
Cameroun : Ngollon, Zamenguile, Houngo
Congo : Ndola
Côte d’Ivoire : Lokoa, Acajou de Bassam
Gabon : Zaminguila, Mbega
Ghana : Dubini
Guinée Equatoriale : Samanguila
Nigeria : Oganwo, Ogwango, Ouo

Khaya anthotheca :
Angola, Cabinda : Udianuno, Quibala
Cameroun : Mangona
Congo : Ndola, Gounkiss, Déhé
Côte d’Ivoire : Krala, Ira, Acajou blanc
Ghana : Kwabako
Guinée Équatoriale : Samanguila
Libéria : Doetue
Nigeria : Ogwango nofuwa
Ouganda : Munyama
République Centrafricaine : Déhé
République Démocratique du Congo : Bobuku, Ekala

Khaya grandifoliola :
Côte d’Ivoire : Loukrou, Acajou à grandes feuilles
Ghana : Dubini, Odupong
Nigeria : mêmes dénominations que *K. ivorensis*
République Démocratique du Congo : Tido, Gagaliga

France, Belgique : Acajou d’Afrique
Allemagne : Khaya, Mahagoni
Grande Bretagne, U. S. A. : African Mahogany
Pays-Bas : Afrikaans Mahogany
Portugal : Mogno Africano
DESCRIPTION DU BOIS

Le bois parfait, fraîchement débité, est rosé. En vieillissant, il prend une teinte allant du brun rosé au rouge sombre avec des reflets cuivrés. L’aubier est bien différencié, de couleur blanc jaunâtre à légèrement rosé. La texture est homogène, le grain moyen. Les débits sur plein quartier peuvent avoir un aspect moiré ou rubané provoqué par un léger contrefil, ou parfois des veines cuivrées, décelant la présence de bois de tension. La maille est fine mais bien apparente. Les pores sont parfois chargés de dépôts noirâtres. Certains échantillons peuvent être figurés et présenter un aspect drapé, ondé, moiré, frisé, moucheté, ou pommelé. Les fourches peuvent fournir les “ronces d’Acajou” recherchées pour le tranchage. K. grandifoliola est très semblable aux autres Acajous de forêt dense, sa couleur étant plus violacée à l’état frais, un peu plus sombre par la suite.

Les pores sont disséminés, au nombre moyen de cinq par mm², de 150 à 200 microns de diamètre dans le sens tangentiel, et contiennent parfois des dépôts résinoïdes brun rouge. Les ponctuations intervasculaires sont très fines, de l’ordre de quatre microns. Le parenchyme est indiscernable à faible grossissement, associé aux pores en manchon étroit et très sporadiquement en lignes tangentielles souvent associées à des rangées de canaux traumatiques. Les rayons, larges de 4 à 6 cellules, sont au nombre de 4 à 7 par mm et ont une structure hétérogène. Certaines cellules de rayons peuvent contenir des cristaux d’oxalate de calcium. On peut rencontrer exceptionnellement chez certains arbres des rayons en disposition étagée.

La structure des Acajous africains est très semblable à celle des Acajous américains (Swietenia sp. pl.), ces derniers ayant plus fréquemment des lignes continues de parenchyme. L’étude de la structure ne permet pas de faire une distinction entre les trois espèces d’Acajou d’Afrique.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

L’Acajou d’Afrique est un bois léger à mi-lourd, tendre à mi-dur. Ses caractéristiques mécaniques, ses retraits linéaires transverses, et son retrait volumique sont faibles à moyens.

Nota : les valeurs ci-après précédées d’un astérisque correspondent à un taux d’humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l’état sec*: de 500 à 680 kg/m³
Dureté Monnin*: 2,4
Point de saturation des fibres : 29 %
Retrait volumique total : 10,9 %
Retrait tangentiel total : 5,4 %
Retrait radial total : 3,7 %
Sensibilité aux variations d’humidité de l’air : moyenne
Stabilité en service : moyenne
Contrainte de rupture en compression parallèle*: 46 MPa
Contrainte de rupture en flexion statique*: 85 MPa
Module d’élasticité longitudinal*: 9 500 MPa
DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
L'Acajou présente une résistance naturelle moyenne vis-à-vis des champignons de pourriture. Il doit subir un traitement de préservation dans tous les emplois où un risque de réhumidification peut survenir. Son utilisation est déconseillée dans les emplois exposés à un risque d'humidification permanente ou prolongée. Cette essence est moyennement durable vis à vis des champignons lignivores (classe de durabilité : 3) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une très faible durabilité naturelle vis-à-vis des termites de l'espèce Reticulitermes santonensis. Cette essence est considérée comme sensible aux termites (classe de durabilité : S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme non imprégnable (classe d'imprégnabilité : 4) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le bois se scie facilement et ne pose pas de problème particulier, exceptées les zones de bois de tension qui donnent aux surfaces sciées un aspect pelucheux.

DÉROULAGE ET TRANCHEAGE
L'Acajou d'Afrique se déroule facilement et se tranche sans difficulté. Il est traditionnellement employé sous forme de placages dans de nombreux emplois haut de gamme. Les bois figurés et les “ronces d'Acajou” fournis par les fourches sont recherchés par les trancheurs. L'Acajou est également déroulé et utilisé en face extérieure de contreplaqué.

SÉCHAGE
Le séchage à l'air ou en séchoir de l'Acajou d'Afrique est rapide, en général sans risque de fente ni de déformation. Les débits de K. grandifoliola peuvent parfois se déformer par tuilage. Lorsque le contrefil est marqué, il est conseillé d'appliquer une charge sur les piles de bois durant le séchage afin de limiter les risques de déformations.
USINAGE
L'Acajou s'usine sans difficulté particulière ; le bois n’est pas désaffûtant. Le contrefil n’a pas d’incidence sur le rabotage ; cependant, il est conseillé d’utiliser un angle d’attaque de 15° à 20° pour limiter les risques d’arrachements de fibres, notamment pour le toupillage des bois débités sur quartier. Certains bois très tendres s’écrasent parfois sous la pression des rouleaux de la raboteuse ou ont tendance à pelucher. L’Acajou se ponce et se poli sans difficulté mais il est souvent trop tendre pour donner un très beau poli.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue.
Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en oeuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION
Le bois se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie. Lorsqu’un parfait état de surface est recherché, en particulier en ameublement, l’application d’un fond dur ou un bouche-porage est conseillé.

CONCLUSIONS ET UTILISATIONS
L’Acajou d’Afrique est traditionnellement employé en ébénisterie, en ameublement, en décoration et en aménagement intérieur, principalement sous forme de placages mais aussi sous forme massive. Les bois figurés et les “ronces d’Acajou” fournis par les fourches sont recherchés par les trancheurs. Cette essence est également déroulée et utilisée en parement de contreplaqué.
Il est apprécié en menuiserie intérieure et extérieure de bâtiment. Il est très utilisé pour la construction de bateaux de plaisance (bordés et ponts) et les coques d’embarcations légères.
AFRORMOSIA

DENOMINATIONS

BOTANIQUES
Pericopsis elata Van Meeuw. (= Afrormosia elata Harms)
Famille des Fabacées

VERNACULAIRES ET COMMERCIALES
Cameroun, République Centrafricaine : Obang
Côte d'Ivoire : Assamela
Ghana : Kokrodua
République Démocratique du Congo : Ole, Bohala, Mohole
France : Assamela

DESCRIPTION DU BOIS

L'aubier est bien différencié, de couleur un peu plus claire que celle du bois parfait. Ce dernier a une couleur brun jaune marquée de traiées plus sombres. Le grain est plutôt fin. Le fil est droit, parfois légèrement contrefilé. Les pores sont disséminés et relativement nombreux, à peine visibles à l'œil nu, soit isolés soit accolés radialement par 2 ou 3 avec tendance à une disposition en lignes obliques onduleuses qui est accusée par les anastomoses du parenchyme associé aux pores. En limite d'accroissement, on observe une fine ligne continue de parenchyme. Les rayons sont étroits, de teinte plus claire que le tissu fibreux.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

L'Afrormosia est un bois mi-lourd, mi-dur à dur. Ses retraits linéaires transverses sont faibles. Son retrait volumique est moyen. Ses résistances mécaniques sont faibles à moyennes.
Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).
Masse volumique à l'état sec*: de 650 à 800 kg/m³
Dureté Monnin*: 7
Point de saturation des fibres : 22 %
Retrait volumique total : 10 %
Retrait tangentiel total : 5,8 %
Retrait radial total : 3,2 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : bois moyennement stable
Contrainte de rupture en compression parallèle*: 64 MPa
Contrainte de rupture en flexion statique*: 103 MPa
Module d'élasticité longitudinal*: 10 600 MPa
DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
L’Afromosia présente une très bonne résistance vis-à-vis des champignons de pourriture. Il est préconisé dans tous les emplois exposés, en cas d’humidification temporaire ou permanente, ou en contact avec le sol. Cette essence est considérée comme durable à très durable vis à vis des champignons lignivores (classe de durabilité : 1-2) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l’espèce Reticulitermes santonensis est très bonne. Cette essence est considérée comme durable vis à vis des termites (classe de durabilité : D) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme non imprégnable (classe d’imprégnabilité : 4) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
L’Afromosia se scie facilement et sans difficulté. Le taux de silice est négligeable et le bois présente un caractère désaffûtant normal.

TRANCHEAGE ET DÉROULAGE
Ce bois n’est pas déroulé. Il se tranche facilement et donne des placages de qualité esthétique recherchée. Un étuvage des quartelles de tranchage est nécessaire (vapeur détendue pendant environ 48 heures). Les placages sèchent relativement facilement avec de faibles risques de fentes de retrait, mais avec parfois l’apparition d’ondulations et de déformations dues au contrefil ; ils se collent sans difficulté.

SÉCHAGE
L’Afromosia sèche assez lentement, tant à l’air qu’artificiellement. Les risques de fente sont faibles, mais les bois contrefilés ont tendance à se déformer.

USINAGE
Cette essence s’use sans problème particulier. Cependant, lorsqu’un parfait état de surface est recherché, il est conseillé de diminuer l’angle d’attaque des outils de rabotage et de moulurage pour éliminer les problèmes posés par le contrefil. Le bois peut acquérir un beau poli et se tourne bien.
ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. En conditions industrielles, des avant-trous sont conseillés. Le collage donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION
Le bois se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie. Les bois contrefilés nécessitent préalablement un ponçage très soigné.

CONCLUSIONS ET UTILISATIONS
Sous forme massive ou en placage, l’Afromosia est utilisé en ébénisterie, en décoration et en ameublement. Il peut aussi convenir à la fabrication de parquet, de lambris, d’escaliers. Il est utilisé en construction navale, notamment pour la fabrication de bordées de ponts de navire où il est parfois autant apprécié que le Teck. Il est apprécié en tournerie. C’est également un excellent bois de menuiserie de haut de gamme, aussi bien intérieure qu’extérieur (portes d’entrée, fermetures extérieures, fenêtres, portes-fenêtres, portes intérieures, escaliers, parquets, portes coupe-feu ...). Il peut être utilisé comme bois d’environnement et en aménagement extérieur (portails, terrasses, vérandas, pergolas, passerelles, aires de loisir, mobilier et aménagement urbain, bungalows).
AIÉLÉ

DENOMINATIONS

BOTANIQUE
Canarium schweinfurthii Engl.
Famille des Burseracées

VERNACULAIRES ET COMMERCIALES
Cameroun : Abel
Côte d'Ivoire : Aielé
Nigéria : Elemi
Gabon : Ovili, Abeul
Ghana : Bediwunua
Sierra Leone, Libéria : Beri, Billi
République Démocratique du Congo : Bidikala
France : Aielé
Royaume-Uni : African canarium
Allemagne : Afrikanisches kanarium
Belgique : Canarium

DESCRIPTION DU BOIS

Le bois parfait est rose pâle plus ou moins beige. L’aubier est plus clair, blanc grisâtre ou jaune paille, mais n’est pas toujours très distinct et facile à discerner. Son épaisseur varie de 5 à 10 cm pour les grumes de dimension commerciale. Le grain est moyen. Le contrefil est fréquent, parfois très accusé, donnant aux débits sur quartier un aspect rubané. On observe fréquemment la présence de veines brunes. Cette essence présente parfois des fractures transversales peu apparentes (coup de vent) ainsi que du "coeur mou" (billes de gros diamètre).

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

Le bois d’Aielé est très léger à léger, très tendre à tendre. Ses retraits linéaires transverses sont moyens à forts. Son retrait volumique est moyen à fort. Ses résistances mécaniques sont faibles.

Nota : les valeurs ci-après précédées d’un astérisque correspondent à un taux d’humidité du bois de 12 % (norme française NF B 51-002).
Masse volumique à l'état sec*: de 400 à 600 kg/m³
Dureté Monnin*: 1,3
Point de saturation des fibres : 40 %
Retrait volumique total : 16,6 %
Retrait tangentiel total : 9,8 %
Retrait radial total : 5,9 %
Sensibilité aux variations d'humidité de l'air : moyenne à élevée
Stabilité en service : faible
Contrainte de rupture en compression parallèle* : 35 MPa
Contrainte de rupture en flexion statique* : 65 MPa
Module d'élasticité longitudinal* : 8 400 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le bois d'Aielé présente peu de résistance vis-à-vis des champignons de pourriture. Il doit donc subir obligatoirement un traitement de préservation dans tous les emplois où un risque de réhumidification peut survenir. Cette essence est considérée comme non durable vis à vis des champignons lignivores (classe de durabilité : 5) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une faible durabilité naturelle vis-à-vis des termites de l'espèce Reticulitermes santonensis. Cette essence est considérée comme sensible aux termites (classe de durabilité : S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme non imprégnable (classe d'imprégnabilité : 4) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Cette essence étant très abrasive du fait de sa forte teneur en silice ; il est recommandé de scier l'Aielé avec des lames stellitées ou à mise rapportée de carbure de tungstène.

TRANCHEAGE ET DÉROULAGE
En raison du diamètre assez important et de la conformation généralement bonne des grumes, l'Aielé est un bois qui convient bien à la fabrication de placages déroulés et de panneaux de contreplaqués. Lorsque les bois sont frais, l'étuvage n'est pas indispensable. Dans le cas contraire, l'étuvage est
souhaitable : à titre indicatif, un étuvage à la vapeur ou à l'eau chaude (80°C) pendant 24 à 36 heures donne des résultats satisfaisants. Le déroulage de l'Aielé ne présente aucune difficulté particulière. Les placages obtenus ont une qualité satisfaisante mais le contrefil peut parfois provoquer des plages de "fil soulevé" ; ce défaut est plus rare sur les placages minces (faces) que sur les placages épais (intérieurs, âmes). Le tranchage des grumes d’Aielé ne pose pas de problème technique mais son intérêt commercial est très limité.

SÉCHAGE
Le séchage est délicat et plutôt lent ; un ressuyage préalable à l'air libre est conseillé. Cette essence est sensible aux risques de déformation, de collapse et de fentes en bout.

USINAGE
En raison du contrefil très fréquent et parfois très accusé, le rabotage, le moulurage et le toupillage de l'Aielé donnent des résultats satisfaisants que si les angles d'attaque sont réduits à 15-20°. De plus, l'emploi d'outils à mise rapportée de carbure de tungstène est conseillé.

ASSEMBLAGE
La fixation de clous, vis et agrafes métalliques ne pose pas de problème particulier. Le bois se colle bien avec tous les types de colles couramment utilisées dans l'industrie.

FINITION
Le ponçage est assez délicat et il est difficile d'obtenir des états de surface satisfaisants. L'Aielé se peint et se vernit sans difficulté, mais lorsqu'un excellent état de surface est recherché, par exemple pour une finition laquée, un bouche porage préalable ou l'application d'un fond dur est conseillé. L'Aielé convient très bien à l'application de teintes.

CONCLUSIONS ET UTILISATIONS
La fabrication de panneaux de contreplaqués constitue le principal débouché de l'Aielé. Cette essence est surtout utilisée pour les âmes ou les intérieurs de panneaux. Les rondins très rubanés peuvent fournir des placages décoratifs dont la mise en teinte donne des résultats satisfaisants. Du fait de sa couleur claire, de son aspect parfois nacré, de sa densité et de sa dureté relativement faibles, l'Aielé apparaît comme un bois pouvant convenir à la fabrication de menuiserie intérieure courante (agencements, rayonnages ...) ou d’éléments de meubles.
ANDOUNG

DENOMINATIONS

BOTANIQUES
Monopetalanthus coriaceus Morel
Monopetalanthus durandii F. Halle et Normand
Monopetalanthus hedinii Pellegr
Monopetalanthus heitzii Pellegr.
Monopetalanthus letestui Pellegr.
Monopetalanthus pellegrini A. Chev.
Monopetalanthus longeracemosus A. Chev.

Famille des Césalpiniacées

Remarque : l'appellation “Andoung” est souvent donnée à de nombreux arbres appartenant à la famille des Césalpiniacées. Cette confusion provient du fait que cette famille comporte des genres présentant des caractères botaniques très voisins, ce qui rend leur identification en forêt assez difficile. L’appellation Andoung doit être uniquement réservée aux espèces à bois tendre du genre *Monopetalanthus.*

VERNACULAIRES ET COMMERCIALES
Cameroun : Ekop (Ekop Mayo, Ekop Zoélé ...)
Gabon : Andoung, N'Douma
Guinée Equatoriale : Andung, Ekop
Congo : Kikayi

DESCRIPTION DU BOIS

Le bois parfait est légèrement plus foncé que l'aubier qui est brun rosâtre avec parfois des reflets mordorés. Il fonce à la lumière plus ou moins rapidement suivant les espèces et prend une couleur brun-rouge clair en vieillissant. Ce bois présente généralement un contrefil léger et régulier qui donne parfois un aspect rubané et décoratif aux débits sur quartier. Cependant, le contrefil est parfois très marqué. *Monopetalanthus durandii* est l'espèce dont le fil est généralement le plus droit.

Remarque : les espèces appartenant au groupe des Andoung présentent des caractères généralement similaires. Cependant, d'une espèce à une autre, le contrefil peut être plus ou moins important et des variations de teinte peuvent être également observées.

A la loupe (grossissement x 15) on peut observer :
. des pores en nombre inférieur à 10 par mm², de diamètre moyen compris entre 125 et 200 µ ;
. du parenchyme de deux sortes, associé aux pores en manchon étroit, et sporadiquement en lignes terminales fines ;
. des rayons relativement nombreux (8 à 14 par mm), unisériés ou bisériés, de structure homogène à sub-homogène en disposition échelonnée ou non.
PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Les Andoung sont des bois légers à mi-lourds, tendres à mi-durs. Ils présentent des retraits linéaires faibles à moyens. Leur retrait volumique est moyen. Leurs résistances mécaniques sont faibles à moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 530 à 650 kg/m³
Densité basale : de 0,45 à 0,53
Dureté Monnin* : de 2,3 à 3,2
Point de saturation des fibres : de 24 à 35 %
Retrait volumique total : de 10,2 à 11,8 %
Retrait tangentiel total : de 6,5 à 8,3 %
Retrait radial total : de 3,8 à 4,4 %
Sensibilité aux variations d'humidité de l'air : peu importante
Stabilité en service : bois peu stable
Contrainte de rupture en compression parallèle* : de 42 MPa à 50 MPa
Contrainte de rupture en flexion statique* : de 87 MPa à 112 MPa
Module d'élasticité longitudinal* : de 9 800 MPa à 12 700 MPa

DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Les Andoung présentent une mauvaise résistance naturelle vis-à-vis des champignons de pourriture et nécessitent un traitement de préservation dans tous les emplois où le bois risque d'être réhumidifié ; leur utilisation en contact permanent avec une source d'humidité est à proscrire.

RÉSISTANCE NATURELLE AUX LYCTUS
L'aubier et le duramen étant souvent peu ou non distincts, il est donc plus prudent de considérer que toute la masse du bois est susceptible d'être attaquée par ces insectes.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois des Andoung ne présente aucune résistance vis-à-vis des termites de l'espèce Reticulitermes santonensis.

IMPRÉGNABILITÉ
Le bois des Andoung est moyennement à peu imprégnable.
CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le sciage des Andoung est assez facile. Le taux de silice du bois est considéré comme négligeable ; le bois n'est pas désaffûtant. Le contrefil du bois a tendance à rendre fibreuses les surfaces sciées. Les rendements sont généralement bons.

TRANCHAGE ET DÉROULAGE
Les Andoung se tranchent et se déroulent assez facilement. Le déroulage à froid est possible pour les billons frais de coupe. En cas d'étuvage, il est conseillé, pour des billons de 0,60 m environ de diamètre, d'effectuer cette opération à 80°C pendant trente heures. Le déroulage provoque généralement l'exsudation d'une résine sirupeuse. Le contrefil du bois peut entraîner un phénomène de “broutage” lors du déroulage de placages de trop forte épaisseur. Le réglage de la dérouleuse est identique à celui conseillé pour l'Okoumé. Les placages doivent être séchés avec précaution compte tenu des risques de déformations et de fentes. Ils sont légèrement “cassants” mais peuvent être enroulés sans dommage notable. La pression de collage conseillée pour la fabrication de contreplaqué est comprise entre 1,3 et 1,4 MPa suivant la densité du bois. Les contreplaqués d'Andoung sont admis dans les spécifications techniques françaises de qualité pour la fabrication de panneaux destinés à des emplois extérieurs ou pour la réalisation de coffrages.

SÉCHAGE
Le séchage à l'air des Andoung doit être mené lentement. En effet, du fait des caractéristiques du bois et de la présence parfois importante de contrefil, il est recommandé de disposer les piles de bois sous abri et, dans la mesure du possible, d'appliquer des charges sur ces piles afin de limiter les risques de déformation des pièces. Le séchage artificiel des Andoung doit être mené lentement surtout si les bois présentent du contrefil. Dans ce cas, il est préférable d'envisager un séchage sous charge. Le bois de Monopetalanthus letestui présentant des retraits linéaires légèrement supérieurs à ceux des autres espèces, son séchage devra être plus particulièrement contrôlé. Par ailleurs, l'identification en industrie des différentes espèces d’Andoung n'étant pas toujours aisée, il sera préférable, par précaution, d'apporter systématiquement un soin particulier au séchage.

USINAGE
Les Andoung se travaillent facilement. Pour les bois présentant du contrefil, il convient de maintenir les fers bien affûtés et de choisir un angle d'attaque d'environ 15°.

ASSEMBLAGE
Les Andoung se clouent et se vissent facilement. Les assemblages tiennent de façon satisfaisante. Le collage des Andoung avec les colles utilisées dans l'industrie ne présente pas de difficulté particulière. La réalisation de panneaux en bois massif reconstitué ou la fabrication de poutres en lamellé-collé donne des résultats satisfaisants.

FINITION
Les Andoung se poncent assez facilement. Vernis, peintures et lasures peuvent être appliqués sans difficulté.
CONCLUSIONS ET UTILISATIONS

Du fait de leurs propriétés, les Andoung sont des bois qui peuvent être employés localement avec succès dans plusieurs secteurs de l'industrie, ou être exportés :
. soit en grumes de premier et deuxième choix (destinées de préférence au déroulage),
. soit en sciages secs et classés afin d'éliminer les débits présentant un contrefil important.

En premier lieu, l'industrie du contreplaqué peut les employer avec profit pour la fabrication de panneaux contreplaqués courants. Les placages peuvent être associés à d'autres essences et être réservés aux faces ou aux plis intérieurs. Par ailleurs, les qualités physiques et mécaniques des Andoung, alliées à leur facilité de mise en œuvre, en font de bons bois de menuiserie intérieure : portes intérieures, placards, escaliers. Leur utilisation en menuiserie extérieure est possible mais elle est subordonnée à l'application correcte d'un traitement de préservation efficace pour leur conférer une durabilité suffisante. Les Andoung peuvent être employés pour la fabrication d'éléments de meubles, de planchers industriels et de fonds de wagon.
ANINGRÉ

DENOMINATIONS

BOTANIQUES
Aningeria altissima Aubrev. & Pellegr.
Aningeria robusta Aubrev. & Pellegr.
Aningeria superba A.Chev.
Famille des Sapotacées

VERNACULAIRES ET COMMERCIALES
Angola : Mukali, Kali
Côte d'Ivoire : Aninguéri blanc, Aniégré
Congo : Mukali, N'Kali
Kénya : Muna, Mukangu
Nigéria : Landojan
Ouganda : Osan
République Centrafricaine : M'Boul
République Démocratique du Congo : Tutu
Allemagne : Aningre, Tanganyika Nuss
Grande-Bretagne : Aningeria
Italie : Tanganyika Noce

DESCRIPTION DU BOIS

L’aubier est peu différencié et Blanchâtre, de teinte voisine de celle du bois parfait qui est blanc jaunâtre à l’état frais, puis brun très pâle avec une nuance rosée. Le bois a un aspect lustré. Le grain est plutôt fin. Le fil est généralement droit, avec occasionnellement un contrefil léger. Les vaisseaux sont disséminés, souvent accolés radialement par 2 ou 3 ou isolés, en nombre supérieur à 10 par mm² (15 à 20) et moyennement fins (100 à 120 microns en moyenne). Les éléments vasculaires sont à perforations uniques. Les ponctuations sont de taille moyenne (7 à 8 microns) sur les parois latérales des vaisseaux accolés. Le parenchyme est indépendant des pores, en fines lignes tangentielles très rapprochées et irrégulièrement onduleuses, visibles seulement à la loupe sur la section transversale (1 à 2 cellules de large et 5 à 7 lignes par mm). Les rayons, au nombre de 8 à 11 par mm, sont de deux types : très étroits, unisériés et sans cellules couchées, ou de structure hétérocellulaire avec plusieurs rangées de cellules carrées ou dressées en section radiale de part et d’autre d’une portion de cellules couchées.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

L’Aningré est un bois léger et tendre. Ses retraits linéaires transverses sont moyens. Son retrait volumique est moyen. Ses caractéristiques mécaniques sont faibles à moyennes.
Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 520 à 620 kg/m³
Dureté Monnin* : 2,6
Point de saturation des fibres : 27 %
Retrait volumique total : 11 %
Retrait tangentiel total : 7 %
Retrait radial total : 3,8 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : moyenne
Contrainte de rupture en compression parallèle* : 48 MPa
Contrainte de rupture en flexion statique* : 93 MPa
Module d'élasticité longitudinal* : 11 000 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
L'Aningré présente très peu de résistance vis-à-vis des champignons de pourriture. Il doit subir obligatoirement un traitement de préservation dans les emplois où un risque de réhumidification peut survenir. Cette essence est considérée comme faiblement durable à non durable vis à vis des champignons lignivores (classe de durabilité : 4-5) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une très faible durabilité naturelle vis-à-vis des termites de l'espèce Reticulitermes santonensis. Cette essence est considérée comme sensible aux termites (classe de durabilité : S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme imprégnable (classe d'imprégnabilité : 1) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
L'Aningré a un effet désaffûtant prononcé (taux de silice élevé, compris entre 0,1 et 0,5%). En scierie, indifféremment sur les scies à ruban ou sur les scies circulaires, le stellitage est indispensable et donne des résultats très satisfaisants.
DÉROULAGE ET TRANCHE

L’Aniégré se déroule et se tranche sans difficulté, et fournit des placages utilisés en ébénisterie, en décoration et en ameublement. Un étuvage à la vapeur à 70 °C environ pendant 24 heures est généralement conseillé. L’opération de déroulage ne pose aucune difficulté particulière. L’opération de tranchage s’effectue sans difficulté et les placages obtenus sèchent facilement et rapidement.

SÉCHAGE

Il est conseillé de sécher artificiellement les bois juste après le sciage afin de limiter les risques de discoloration fongique. Le séchage doit être conduit lentement afin d’éviter l’apparition de gerces et de déformations auxquelles cette essence est sensible. Un compromis doit être trouvé entre la nécessité de sécher rapidement les bois après sciage pour éviter les risques d’attaque de champignons de pourriture, et l’obligation d’utiliser une table de séchage “douce” pour prévenir le développement de gerces et de fentes de retrait.

USINAGE

En seconde transformation, il est conseillé d’utiliser des outils au carbure de tungstène car le bois est très désaffûtant. Pour les pièces contrefilées, les outils en acier rapide sont préférés aux outils au carbure car ils permettent d’obtenir de meilleurs états de surface grâce à un affûtage plus précis.

ASSEMBLAGE

Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION

Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie. Lorsqu’un parfait état de surface est recherché, en particulier en ameublement, l’application d’un fond dur ou un bouche-porage est conseillé. Il se teinte très bien, aussi bien en couleur claire que foncée.

CONCLUSIONS ET UTILISATIONS

L’Aniégré est principalement utilisé en placage pour la fabrication de contreplaqué et en décoration sous forme tranchée. Il est apprécié en ébénisterie massive (chaises, fauteuils, pieds de table) ou plaquée pour les meubles d’intérieur. Il convient pour la fabrication de moulure ainsi qu’en construction légère, en menuiserie intérieure (ossature, lamellé-collé), en agencement, aménagement et décoration intérieure. Il est aussi adapté à la fabrication d’objet divers tournés ou sculptés.
AZOBE

DENOMINATIONS

BOTANIQUE
Lophira alata Banks ex Gaertn. f.
Famille des Ochnacées

VERNACULAIRES ET COMMERCIALES
Cameroun : Bongossi
Côte d'Ivoire, France : Azobé
Ghana : Kaku
Nigéria : Eba, Ekki
Congo : Bonkolé
Gabon : Akoga
Allemagne : Azobé, Bongossi
Royaume-Uni : Red ironwood, Ekki

DESCRIPTION DU BOIS

L'aubier de l'Azobé n'est pas très bien différencié. Son épaisseur varie en moyenne de 7 à 10 cm, mais en réalité la portion réellement aubieuse n'est que de 3 cm environ, le reste étant constitué par du bois plus foncé appelé “bois intermédiaire” dont les propriétés ne sont pas similaires à celles du bois parfait. Le bois parfait d'Azobé est brun chocolat foncé. Sa teinte fonce encore après exposition à la lumière. Les traces des vaisseaux ressortent bien car ceux-ci sont très fréquemment remplis de dépôts blanchâtres. Les débits sur dosse présentent des figures brun violacé mates contrastant avec le fond brun foncé brillant. Le grain est grossier. Le fil est parfois enchevêtre. Le contrefil est fréquent et irrégulier.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MECANIQUES

L'Azobé est un bois très lourd, dur à très dur. Ses retraits linéaires transverses sont élevés. Son retrait volumique est élevé. Ses résistances mécaniques sont fortes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 1000 à 1100 kg/m³
Dureté Monnin* : 10,5
Point de saturation des fibres : 28 %
Retrait volumique total : 19 %
Retrait tangentiel total : 10,3 %
Retrait radial total : 7,3 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : faible
Contrainte de rupture en compression parallèle* : 96 MPa
Contrainte de rupture en flexion statique* : 180 MPa
Module d’élasticité longitudinal* : 17 300 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le bois d’Azobé présente une bonne résistance vis-à-vis des champignons de pourriture. Dans des conditions normales de mise en oeuvre, sa durabilité naturelle suffit à lui assurer une bonne conservation sans qu’il soit nécessaire de le traiter.

Cette essence est considérée comme durable vis à vis des champignons lignivores (classe de durabilité : 2) selon la norme NF EN 350-1 qui précise cependant que sa durabilité naturelle est particulièrement variable.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l'espèce Reticulitermes santonensis est bonne. Cette essence est considérée comme durable vis à vis des termites (classe de durabilité : D) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme non imprégnable (classe d’imprégnabilité : 4) selon la norme NF EN 350-2.

Remarque : cette essence est couramment utilisée en zone tempérée pour la construction d’ouvrages hydrauliques avec des risques très limités de dégradation ; en revanche, dans les régions tropicales, sa résistance aux attaques de xylophages marins demeure variable et son utilisation est même déconseillée dans les lagunes saumâtres qui constituent un milieu particulièrement favorable à la prolifération des tarets.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
L'Azobé est un bois très dur mais son taux de silice est très faible. Le sciage des billes très fraîches ne présente pas de difficulté à condition d'utiliser un matériel adapté. Il est préconisé d'utiliser des scies très puissantes et des lames parfaitement affutées, avec un angle d'attaque de 20° (sciage lent) à 30° (sciage rapide), et un angle de dépouille aussi faible que possible.
SÉCHAGE
Le séchage de l'Azobé est très lent et délicat. Il doit être conduit très prudemment, en raison des risques sévères de fentes et de gerces. En particulier lorsque le contrefil est très accusé, des déformations se produisent fréquemment sur les débits de faible section : en pratique, il est conseillé d’utiliser préférentiellement l’Azobé en grosses sections, les risques de déformations des bois sur les petites sections étant très élevés après mise en œuvre.
Le ressuage des bois doit être effectué sous abri. Compte tenu de la difficulté et de la lenteur de l'opération, l'Azobé est très rarement séché en séchoir artificiel.

USINAGE
En raison de sa dureté et de sa densité élevées, l'Azobé a un effet abrasif important sur les outils. Son usinage ne donne des résultats satisfaisants qu'à condition d'employer des machines puissantes. Au rabotage, la consommation d'énergie est deux fois plus importante que pour un Chêne moyen. Au perçage, les meilleurs résultats sont obtenus en utilisant un angle d'attaque de 40 à 45°. Au perçage, le bois a parfois tendance à carboniser légèrement.

ASSEMBLAGE
Les clous, vis, agrafes et chevilles métalliques pénètrent difficilement dans l'Azobé et leur fixation peut générer des fentes. Des avant-trous sont toujours nécessaires.
Le collage de l’Azobé est délicat compte tenu de ses forts retraits de séchage et déconseillé dans des conditions de fabrication industrielle.

FINITION
Le contrefil du bois rend difficile l’obtention d’états de surface satisfaisants après ponçage. Bien que l’application de produits de finition ne pose pas de problème particulier, la tenue des finitions laisse souvent à désirer car fréquemment, l'humidité des bois n’est pas stabilisée après mise en œuvre.

CONCLUSIONS ET UTILISATIONS
L’Azobé est un bois très lourd et très dur, d’une excellente durabilité naturelle, mais peu stable. La mise en œuvre de l’Azobé présente certaines difficultés, ce qui contribue à freiner le développement de son emploi (séchage lent et délicat en raison des risques de gerces, de fentes et de déformations ; nécessité d’utiliser des machines puissantes).
L’Azobé est avant tout un bois de constructions lourdes, utilisations auxquelles il est adapté du fait de sa bonne durabilité naturelle, sa résistance à l'usure et ses propriétés mécaniques.
Il est apprécié pour les installations en milieu exposé : ouvrages portuaires (estacades, jetées ...), constructions hydrauliques (écluses ...), traverses de chemin de fer, fonds de wagon, constructions rurales (écuries, étables, hangars ...), ponts (éléments porteurs ou répartiteurs de charge). Cependant, employé au contact du sol, sa durabilité naturelle reste limitée par l’éventuelle présence de bois intermédiaire qui doit être éliminé systématiquement pour ce type d’utilisation.
L’Azobé est aussi employé pour la fabrication de seuls, de pièces d’appui, de jets d’eau, et pour certains éléments de maisons à ossature bois. Il peut aussi convenir pour la fabrication de parquets et d'escaliers très résistants à l'usure et aux acides, destinés notamment à des applications industrielles.
BILINGA

DENOMINATIONS

BOTANIQUES

Nauclea diderrichii Merril
Nauclea gilletii Merril
Nauclea xanthoxylon Aubrèv.

Famille des Rubiacées

VERNACULAIRES ET COMMERCIALES

Angola : Engolo
Cameroun : Akondoc
Congo : Mokessé, Linzi, N'gulu-maza
Côte-d'Ivoire : Badi
Gabon, Guinée Equatoriale : Aloma, Bilinga
Ghana : Kusia
Nigéria, Grande-Bretagne : Opepe, Opepi
Ouganda : Kilingi
République Centrafricaine : Kilu
Sierra Leone : Bundui
République Démocratique du Congo : N'gulu-maza, Bonkangu

DESCRIPTION DU BOIS

L'aubier est de couleur jaune grisâtre ou rosâtre. Le bois parfait, jaune citron vif, fonce un peu à la lumière et devient doré ou ocre orangé, à reflets légèrement moirés. Le fil est souvent ondulé et/ou contrefilé. Le grain est moyenn. Le bois ne dégage aucune odeur particulière.

A la loupe (grossissement x 15) on peut observer :

- des pores assez inégalement répartis, souvent isolés, peu nombreux (3 à 6 par mm³), pouvant apparaître de deux tailles différentes (les gros de 200 à 250 µ de diamètre, les petits de 100 à 150 µ) ;
- de petits rayons parfois articulés, larges de 2 à 3 cellules, de structure très hétérogène, au nombre de 10 à 15 par mm ;
- le parenchyme peu abondant formé de cellules isolées ou de courtes lignes tangentielles, perceptibles seulement à plus fort grossissement.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

Le Bilinga est un bois mi-lourd à lourd, mi-dur à dur, présentant des retraits linéaires moyens. Son retrait volumique est moyen à fort. Ses résistances mécaniques sont moyennes.
Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 730 à 890 kg/m3
Densité basale : 0,65
Dureté Monnin* : 5,3
Point de saturation des fibres : 25 %
Retrait volumique total : 12,3 %
Retrait tangentiel total : 7,5 %
Retrait radial total : 4,7 %
Sensibilité aux variations d'humidité de l'air : moyennement importante
Stabilité en service : bois moyennement stable
Contrainte de rupture en compression parallèle* : 63 MPa
Contrainte de rupture moyenne en flexion statique* : 104 MPa
Module d'élasticité longitudinal* : 11 800 MPa

DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Bilinga présente une très bonne durabilité vis-à-vis des différents types de pourriture fibreuse (Coriolus versicolor, Pycnoporus sanguineus, Lentinus squarrosulus) et cubique (Antrodia sp.). Il peut être utilisé sans traitement de préservation dans la majorité de ses emplois. Lorsqu’il est en contact direct et permanent avec le sol, il est possible de renforcer sa durabilité naturelle par un traitement sous vide et pression avec des produits appropriés (par exemple créosote pour des traverses de chemin de fer). Cette essence est considérée comme très durable vis à vis des champignons lignivores (classe de durabilité : 1) selon la norme NF EN 350-1. Elle couvre naturellement (sans traitement de préservation) la classe 4 de risque biologique.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait n'est pas attaqué par les Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis à vis des termites de l'espèce Reticulitermes santonensis est très bonne. Cette essence est considérée comme durable vis à vis des termites (classe de durabilité : D) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme moyennement imprégnable (classe d'imprégnabilité : 2) selon la norme NF EN 350-2.

RÉSISTANCE NATURELLE VIS-À-VIS DES FOREURS MARINS
A l'égard de ces organismes destructeurs du bois, le Bilinga est une des essences tropicales les plus résistantes dans les eaux tempérées atlantiques et méditerranéennes.
CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Bilinga se scie normalement à condition d'utiliser un matériel puissant. Le taux de silice contenu dans le bois peut être considéré comme négligeable ($t < 0,05 \%$).

TRANCHAGE ET DÉROULAGE
Le Bilinga se déroule difficilement. En revanche, il se tranche facilement et donne des placages de bonne qualité et décoratifs à condition que les bois soient correctement étuvés.

SÉCHAGE
Le Bilinga se déforme peu au séchage. Très sujet aux gerces, il doit toujours être séché lentement et prudemment sous abri. Les pièces débitées sur quartier sèchent sans risque important de gerces. Par contre, les pièces débitées sur dosse sèchent plus difficilement (des fentes en bout et des gerces plus ou moins graves sont fréquents).

ASSEMBLAGE
Le Bilinga se cloue et se visse sans difficulté à condition de pratiquer des avant-trous. Les essais effectués avec des colles de type résorcine montrent que la résistance au cisaillement dans les plans de collage est bonne ainsi que l'adhérence et la tenue dans le temps (essai de délamination). D'une façon générale, le collage du Bilinga est satisfaisant avec toutes les colles employées couramment dans l'industrie.

FINITION
Vernis, peintures, lasures peuvent être appliqués sans difficulté. Pour les finitions soignées, un bouche-porage est cependant conseillé.

CONCLUSIONS ET UTILISATIONS
Le Bilinga fait l'objet d'un courant d'exportation faible mais régulier. Etant donné ses résistances mécaniques satisfaisantes et sa bonne durabilité, le Bilinga convient pour de nombreux emplois en extérieur : traverses de chemin de fer, constructions portuaires, ouvrages hydrauliques. En menuiserie, l'utilisation de ce bois est également envisageable bien qu'il ait tendance à se fendre dans les ambiances trop sèches ; il conviendra de bien le sécher et de lui appliquer des produits de finition (vernis, lasures, peintures, cires) qui auront pour rôle de diminuer les échanges d'humidité entre le bois et l'air ambiant, et limiter les risques de gerces. Compte tenu de ces remarques, l'utilisation du Bilinga peut convenir pour des usages variés : panneaux lamellés-collés, menuiseries intérieures, menuiseries extérieures, meubles, parquet, aménagement intérieur, construction, planchers de véhicules, construction navale, placages tranchés décoratifs.
BOSSÉ

DÉNOMINATIONS

BOTANIQUES

Guarea cedrata Pellegr., *G. laurentii* De Wild., *G. thompsonii* Sprague

Famille des Méliacées

VERNACULAIRES ET COMMERCIALES

Bossé clair (*Guarea cedrata et Guarea laurentii*)

Côte d'Ivoire : Bossé, M'Bossé

Cameroun : Ebangbenwa, Edoucié

Ghana : Kwabohoro

Liberia : Doetue

Nigeria : Obobo-nofwa

République Démocratique du Congo : Diambi

Angleterre : Guarea

Bossé foncé (*Guarea thompsonii*)

Côte d'Ivoire : Mutigabnaye, Nougouatan

Gabon : Ikoudwerere, N'kisiko

Nigeria : Obobo-nekwi

République Démocratique du Congo : Diambi

Allemagne, Belgique, Hollande : Diambi

Angleterre : Black Guarea

DESCRIPTION DU BOIS

Le bois parfait est généralement de couleur uniforme, brun rose assez clair, fonçant après exposition à la lumière, d'un éclat légèrement nacré. Certains échantillons présentent des taches brunes qui, lorsqu'elles sont abondantes, peuvent avoir un effet décoratif. Le bois de *G. thompsonii* est un peu plus foncé que celui des deux autres espèces, tirant sur le brun orangé. L'aubier est peu différencié, d'un jaune rosé plus pâle que le bois parfait. Le grain est assez fin et la texture est très homogène. Le fil est souvent tourmenté, ondulé, avec un contrefil irrégulier qui donne aux débits sur quartier et aux tranchages un aspect moiré. L'odeur du bois est assez caractéristique, très prononcée sur les bois frais, et rappelle celle du cèdre. Certains individus laissent exsuder abondamment une résine fluide gênante pour les emplois en ébénisterie.

Le parenchyme, visible à l'œil nu, est disposé en longues lignes ondulées, au nombre de 2-3/mm chez *G. cedrata*, 4-5/mm chez *G. laurentii* ; elles sont plus épaisses chez *G. thompsonii*, au nombre de 4-5/mm.

On observe souvent la présence de chaînes de cristaux dans les cellules de parenchyme. Les pores sont assez fins, isolés ou accolés radialement par 2 ou 3. Leur diamètre est compris entre 100 et 175 microns. Ils sont au nombre de 7 à 15 par mm² chez *G. cedrata et G. laurentii*, et 6-8 par mm² chez *G. thompsonii*. Les ponctuations intervasculaires sont très fines, de l’ordre de 3-4 microns. Les rayons, larges de 2 cellules, sont homocellulaires. Ils contiennent des corpuscules siliceux abondants chez *G. cedrata*, rares chez *G. laurentii* et *G. thompsonii*.
PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Bossé est un bois léger à mi-lourd, mi-dur à dur. Ses retraits linéaires transverses sont faibles à moyens. Son retrait volumique est moyen. Ses caractéristiques mécaniques sont moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 600 à 700 kg/m³
Dureté Monnin* : 4,4
Point de saturation des fibres : 29 %
Retrait volumique total : 12,4 %
Retrait tangential total : 6,8 %
Retrait radial total : 4,1 %
Sensibilité aux variations d'humidité de l'air : faible
Stabilité en service : bonne
Contrainte de rupture en compression parallèle* : 59 MPa
Contrainte de rupture en flexion statique* : 115 MPa
Module d'élasticité longitudinal* : 10 800 MPa

DURABILITÉ ET IMPRÉGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Bossé présente une bonne résistance vis-à-vis des champignons de pourriture. Il peut être utilisé sans traitement de préservation dans tous les emplois où un risque de réhumidification existe, mais il n'est pas conseillé dans les emplois exposés à un risque d'humidification permanente ou prolongée. Cette essence est considérée comme durable vis à vis des champignons lignivores (classe de durabilité : 2) selon la norme NF EN 350-1 qui précise cependant que la durabilité naturelle du Bossé clair est particulièrement variable.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Cette essence est considérée comme sensible aux termites (classe de durabilité : S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme non imprégnable (classe d'imprégnabilité : 4) selon la norme NF EN 350-2.
CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Bossé se scie facilement mais nécessite l’emploi de lames stellitées car le bois a un effet désaffûtant assez élevé (le taux de silice de *G. cedrata* en particulier est notable, en moyenne compris entre 0,05% et 0,1%). La tenue des dents stellitées est excellente.

DÉROULAGE
Le Bossé se déroule et se tranche sans difficulté, et fournit des placages utilisés en ébénisterie, en décoration et en ameublement.

SÉCHAGE
Le Bossé séche facilement et rapidement. Les risques de déformation sont très faibles pour *G. cedrata*, un peu plus élevés pour *G. thompsonii*. Les trois espèces ont très peu tendance à fendre mais peuvent gercer de façon superficielle. Lors du séchage, la résine contenue dans le bois peut ressortir et altérer les états de surface.

USINAGE
Le Bossé s’usine bien et le contrefil n’est pas gênant, mais l’effet abrasif du bois (surtout pour *G. cedrata*) rend nécessaire l’emploi d’un outillage stellité ou à mise rapportée de carbure de tungstène pour avoir une tenue de coupe suffisante dans le cadre d’une fabrication industrielle.
Le bois se ponce bien mais il est recommandé d’équiper les machines de systèmes d’aspiration efficaces car les poussières dégagées ont parfois une action irritante sur certaines personnes.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue.
En conditions industrielles, des avant-trous sont conseillés pour *G. thompsonii* qui est plus dur que les deux autres espèces. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION
Le bois se peint et se vernit sans difficulté mais l’exsudation de résine sous les produits de finition peut provoquer l’apparition de taches.

CONCLUSIONS ET UTILISATIONS
Sous forme massive, le Bossé est un excellent bois de menuiserie extérieure et intérieure. Il peut convenir pour la fabrication de revêtements de façade, de portes d’entrée, de fermetures extérieures, de fenêtres. Il est aussi employé pour la fabrication de lambris ainsi qu’en agencement intérieur, en ameublement, en ébénisterie et en décoration sous forme massive ou plaquée. Il est utilisé comme l’Acajou pour la construction de bateaux de plaisance. Pour son odeur, il est aussi employé comme le Cedro pour la fabrication de boîtes à cigares. Le risque d’exsudation de résine gênante en ébénisterie constitue le seul facteur limitant son utilisation.
BUBINGA

DENOMINATIONS

**BOTANIQUES**
Famille des Césalpiniacées

**VERNACULAIRES ET COMMERCIALES**
Cameroun : Bubinga, Essingang
Gabon : Kevazingo
Guinée Equatoriale : Oveng
République Démocratique du Congo : Waka
Allemagne, France, Royaume-Uni : Bubinga
Etats-Unis : Akume

DESCRIPTION DU BOIS

L'aubier est bien distinct, de couleur crème ; son épaisseur varie de 2 à 8 cm. Le bois parfait de Bubinga a une couleur vieux rose à brun rougeâtre parcourue de nombreuses et très étroites veines violacées assez discontinues, ainsi que de quelques veines brunes plus larges et plus diffuses. Très net et continu sur le bois fraîchement débité, le veinage s'estompe légèrement après exposition à l'air et à la lumière. En revanche, la couleur générale du bois évolue peu. Le grain est moyen. Le fil est le plus souvent ondé, rarement droit. Le contrefil est relativement fréquent, irrégulier, et confère au bois lors de l'utilisation un aspect irrégulièrement moiré. Les débits sur dosse sont très ramagés (veines violettes).

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Bubinga est un bois mi-lourd à lourd, dur à très dur. Ses retraits linéaires transverses sont moyens. Son retrait volumique est moyen à fort. Ses résistances mécaniques sont moyennes à fortes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).
Masse volumique à l'état sec : de 750 à 950 kg/m³
_Dureté Monnin : 10
_Point de saturation des fibres* : 23 %
_Retrait volumique total* : 13,1 %
_Retrait tangentiel total* : 7,9 %
_Retrait radial total* : 5,1 %
_Sensibilité aux variations d'humidité de l'air* : moyenne
_Stabilité en service* : moyenne
_Contrainte de rupture en compression parallèle* : 76 MPa
Contrainte de rupture en flexion statique* : 152 MPa
Module d'élasticité longitudinale* : 16 300 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Bubinga présente une bonne résistance vis-à-vis des champignons de pourriture. Il peut être employé pour de nombreux usages présentant des risques de réhumidification temporaire ou permanente. Cette essence est considérée comme durable vis à vis des champignons lignivores (classe de durabilité : 2) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l'espèce Reticulitermes santonensis est bonne. Cette essence est considérée comme durable vis à vis des termites (classe de durabilité : D) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme non imprégnable (classe d'imprégnabilité : 4) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Etant dur mais non abrasif, le Bubinga se scie facilement à l'aide d'équipements assez puissants. Son comportement au sciage ne pose pas de problèmes particulier. Pour le sciage des grumes dans des conditions industrielles (forte production), il est cependant conseillé d’utiliser des lames stellitées.

TRANCHEAGE ET DÉROULAGE
En raison de ses qualités esthétiques, le Bubinga est typiquement une essence de tranchage appréciée pour la fabrication de placages décoratifs. En raison de sa masse volumique élevée, il est indispensable d’étuver les quartelles de tranchage. Le comportement du Bubinga lors du tranchage est homogène et régulier. Le contrefil donne fréquemment aux placages un aspect moiré. Le Bubinga n’est que très peu déroulé dans des conditions industrielles.
SÉCHAGE
A l'air libre, le Bubinga sèche sans difficulté, sans fente ni déformation, et relativement rapidement pour un bois dense et dur. Un ressuyage préalable au séchage artificiel est conseillé pour obtenir des pièces séchées sans défaut.

USINAGE
Son comportement lors de l’usinage est voisin de celui du Doussié. Compte tenu de sa dureté, le Bubinga est un bois qui se travaille très bien avec un outillage à mise rapportée de carbure de tungstène (outillage classique pour les bois présentant des caractéristiques équivalentes). Il se dégauchit et se rabote très bien. L’état de surface obtenu est excellent, de qualité plus variable lorsque le fil est irrégulier. Il se moulure, se toupille et se tourne sans difficulté.

ASSEMBLAGE
Les clous, agrafes, vis et chevilles métalliques ont une bonne tenue, mais du fait de la dureté du bois, des avant-trous sont conseillés.
Le collage du bois avec toutes les colles habituellement utilisées dans l’industrie ne présente pas de difficultés particulières.

FINITION
Lors de la finition, le Bubinga prend un très beau poli. Les qualités esthétiques du Bubinga se suffisent généralement à elles-mêmes : le bois prend un très beau fini, se cire et se vernit sans difficulté. Il accepte bien les teintes et peut être parfois utilisé de ce fait comme succédané du Palissandre.

CONCLUSIONS ET UTILISATIONS
Le Bubinga est une essence appréciée dont le bois présente un grain fin et une couleur vieux rose finement veinée très recherchée. Il est lourd, dur et assez durable. C'est avant tout une essence de décoration, soit sous forme de placages tranchés, soit sous forme massive. Il peut convenir à la fabrication de mobilier de haut de gamme, de sièges et meubles spéciaux, de panneaux décoratifs. Il est très apprécié par l'industrie du parquet. Ses qualités mécaniques, esthétiques et sa durabilité justifient son large emploi en tournerie pour la fabrication de manches de couteaux, de brosses, d'objets divers (jouets, ustensiles culinaires), de bibelots. Il peut être aussi employé en menuiserie extérieure de haut de gamme compte tenu de sa bonne durabilité naturelle.
CELTIS

DENOMINATIONS

BOTANIQUES

Diana
Celtis adolfi-friderici Engl.
Celtis tessmannii Rendle (= *Celtis brieyi* De Wild)

Ohia
Celtis mildbraedii Engl.
Celtis zenkeri Engl. (= *Celtis soyauxii* Engl.)
Celtis gomphophylla Bak.
Famille des Ulmacées

VERNACULAIRES ET COMMERCIALES

Diana
Congo : Kiliakamba
Côte-d'Ivoire : Lohonfé
Gabon : Engo
Ghana : Esa-biri, Esa-kosua
Liberia : Lokonfi
Nigeria : Ita, Dunki, Zuwo
Ouganda : E kembe bakaswa
République Démocratique du Congo : Diania

Ohia
Cameroun : Odou
Côte-d'Ivoire : Ba, Asan
Ghana : Esa, Esa-fufu, Esa-pa, Esa kokoo
Kenya : Shiunza
Nigeria : Ohia
Ouganda : Namanuka, Mukokukoma
République Démocratique du Congo : Luniumbu, Bolunde, Kayombo

DESCRIPTION DU BOIS

L'aubier des Celtis est blanc jaunâtre. Le bois parfait est blanc jaunâtre à beige clair à l'état frais et vire au beige-gris en séchant. Le fil est généralement droit, parfois irrégulier ou contrefilé. Le grain est fin à moyen. Certaines grumes de Diana sont affectées à cœur d'une discoloration verdâtre.

A la loupe (grossissement x 15), on peut observer :
- des pores en nombre variable suivant les espèces (de 5 à 7 par mm chez *C. tessmannii* à plus de 15 par mm chez *C. mildbraedii*) et de diamètre moyen compris entre 100 et 150µ ;
du parenchyme bien visible, en minces couches tangentielles ondulées chez l’Ohia et davantage associé aux pores, juxtavasculaire, plus ou moins aliforme et anastomosé entre pores voisins chez le Diania ; des rayons 2-à 4-(6) sériés (6 à 9 par mm en moyenne), de structure hétérogène.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Les caractéristiques technologiques des Celtis, notamment celles de l’Ohia, présentent une très forte variabilité. Les Celtis sont des bois mi-lourds, mi-durs à très durs, présentant des retraits linéaires faibles à moyens. Leurs retraits volumiques sont moyens à forts. Leurs résistances mécaniques sont moyennes à élevées (Diania).

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

<table>
<thead>
<tr>
<th></th>
<th>Diania</th>
<th>Ohia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse volumique à l'état sec*</td>
<td>de 620 à 830 kg/m³</td>
<td>de 580 à 900 kg/m³</td>
</tr>
<tr>
<td>Dureté Monnin*</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Point de saturation des fibres</td>
<td>26%</td>
<td>26%</td>
</tr>
<tr>
<td>Retrait volumique total</td>
<td>11,8%</td>
<td>12,9%</td>
</tr>
<tr>
<td>Retrait tangentiel total</td>
<td>7,4%</td>
<td>8,3%</td>
</tr>
<tr>
<td>Retrait radial total</td>
<td>4%</td>
<td>4,8%</td>
</tr>
<tr>
<td>Sensibilité aux variations d'humidité de l'air</td>
<td>faible à moyenne</td>
<td>faible à moyenne</td>
</tr>
<tr>
<td>Stabilité en service</td>
<td>moyenne</td>
<td>moyenne</td>
</tr>
<tr>
<td>Contrainte de rupture en compression parallèle*</td>
<td>59 MPa</td>
<td>59 MPa</td>
</tr>
<tr>
<td>Contrainte de rupture moyenne en flexion statique*</td>
<td>126 MPa</td>
<td>126 MPa</td>
</tr>
<tr>
<td>Module d’élasticité longitudinal*</td>
<td>13 500 MPa</td>
<td>13 500 MPa</td>
</tr>
</tbody>
</table>

DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS

Les Celtis d’Afrique présentent une faible résistance vis-à-vis des champignons de pourriture. Ils doivent donc être considérés comme des bois non durables qui doivent subir obligatoirement un traitement de préservation dans tous les emplois où un risque de réhumidification peut survenir.
RÉSISTANCE NATURELLE AUX LYCTUS
L’aubier et le duramen étant souvent peu ou non distincts, il faut donc considérer que toute la masse du bois est susceptible d’être attaquée par les Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l’espèce Reticulitermes santonensis est moyenne.

IMPRÉGNABILITÉ
Le bois des Celtis est facilement imprégnable en autoclave.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Les Celtis se scient assez facilement. Le taux de silice étant négligeable (t < 0,05%), les bois ne sont pas désaffûtants. Immédiatement après le sciage, il est conseillé de traiter les bois contre les risques d’attaque de champignons (bleuissement), ou de sécher artificiellement les débits.

TRANCHAGE ET DÉROULAGE
Les Celtis se déroulent et se tranchent facilement. L’étuvage des grumes s’effectue à environ 85°C. Le séchage des placages ne pose pas de difficulté. Leur collage avec des colles de type urée-formol ou phénol-formol est satisfaisant. La pression de collage conseillée pour la fabrication de contreplaqué est comprise entre 1,4 et 1,5 MPa selon la densité du bois. Il faut noter que le ponçage des panneaux d’Ohia peut générer des poussières parfois irritantes. À titre indicatif, des essais industriels de déroulage et de fabrication de contreplaqué de Celtis ont donné des résultats satisfaisants dans les conditions suivantes : température d’étuvage : 65 à 70°C ; épaisseurs des placages : 11/10, 23/10, 30/10 ; séchage des placages en continu à 160°C pour une vitesse d’amenage de 15 m/mm (placages de 30/10), ou 180 °C pour une vitesse d’amenage de 30 m/mm (placage de 11/10 mm).

SÉCHAGE
Les bois doivent être séchés lentement et prudemment. En effet, les déformations sont fréquentes pour les pièces fortement contrefilées. Des fentes en bout peuvent aussi apparaître en cours de séchage (notamment chez l’Ohia). En séchage à l’air, pour éviter les risques d’attaque par les champignons, un traitement fongicide est à prévoir immédiatement après le sciage. De plus, les débits doivent être empilés de préférence sous abri. Il est également recommandé d’appliquer une charge sur les piles de bois afin d’éviter d’éventuelles déformations. Le séchage artificiel nécessite des précautions analogues à celles préconisées pour le séchage à l’air.

USINAGE
Les Celtis se travaillent facilement sauf si les débits présentent un contrefil important ; dans ce cas, il convient de maintenir les fers bien affûtés et de choisir un angle d’attaque d’environ 15°. L’usinage de l’Ohia génère des poussières parfois irritantes.

ASSEMBLAGE
Pour les bois lourds et denses, des avant-trous doivent être effectués préalablement au clouage et au vissage.
Les principaux types de colles utilisées dans l’industrie peuvent convenir au collage des Celtis. Sur des poutres lamellées-collées composées d’une seule espèce ou d’espèces différentes (Diania, Ohia), les essais effectués avec des colles de type résorcine montrent que la résistance au cisaillement dans les plans de collage est bonne et que l’adhérence est satisfaisante.

FINITION
Peintures, vernis et lasures peuvent être appliqués sans difficulté particulière.

CONCLUSIONS ET UTILISATIONS

Compte tenu de leur abondance en forêt et de leur aire de répartition étendue, les Celtis demeurent encore insuffisamment exploités. Ils peuvent être utilisés avec succès dans de nombreux emplois à condition de traiter les grumes préalablement au sciage et de sécher lentement les bois afin de limiter les risques de fentes et de déformations.

Du fait de leurs caractéristiques mécaniques satisfaisantes et de leur bonne imprégnabilité, les Celtis peuvent convenir pour les usages suivants : menuiseries intérieures, parquets, meubles, escaliers, moulures et plinthes, charpentes abritées, menuiseries extérieures (avec traitement), articles de sport. Pour tous les emplois intérieurs, un traitement préalable des bois contre les Lyctus est recommandé. Dans les pays producteurs, les Celtis sont utilisés en déroulage. Les placages sont destinés à la fabrication de contreplaqué (notamment pour emballage) et sont parfois employés à des fins décoratives.
DABEMA

DENOMINATIONS

BOTANIQUE
Piptadeniastrum africanaum Brenan (= _Piptadenia africana_ Hook.)
Famille des Mimosacées

VERNACULAIRES ET COMMERCIALES
Angola, Congo : N'Singa
Cameroun : Atui
Côte-d'Ivoire : Dabéma
Gabon : Toum
Ghana (et Grande-Bretagne) : Dahoma, Elae, Odan
Guinée Equatoriale : Tom
Libéria : Mbeli
Nigeria (et Grande-Bretagne) : Agboin, Ekhimi
Ouganda : Mpewere
République Centrafricaine : Koungou
Sierra Leone : Mbele-Guli
République Démocratique du Congo : Bokungu, Likundu
Hollande : Bukundu

DESCRIPTION DU BOIS

L'aubier du Dabéma est blanc grisâtre. Le bois parfait est de teinte assez variable : gris-brun, jaune verdâtre ou gris jaunâtre. Le fil est parfois irrégulier, souvent contrefilé. Ce contrefil, parfois régulier, donne à certains débits un aspect rubané. Le grain est plutôt grossier. Le bois frais a une odeur fétide, caractéristique, légèrement ammoniacale, qui disparaît après séchage.

A la loupe (grossissement x 15) on peut observer :
. des pores rares (2 ou 3 par mm²) et gros (200 à 250 µ) ;
. du parenchyme de deux sortes, associé aux pores en manchon et devenant aliforme et anastomosé en limite d'accroissement, ou en cellules isolées et dispersées parmi les fibres ou le long des rayons ;
. des rayons de faible taille, 3- à 5- sériés, au nombre de 5 ou 6 par mm, de structure homogène.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Dabéma est un bois mi-lourd, mi-dur, présentant des retraits linéaires faibles à moyens. Son retrait volumique est moyen à fort. Ses résistances mécaniques sont moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec*: de 590 à 800 kg/m³
Densité basale : 0,59
Dureté Monnin* : 4,4
Point de saturation des fibres : 27 %
Retrait volumique total : 12,4 %
Retrait tangentiel total : 8,5 %
Retrait radial total : 3,8 %
Sensibilité aux variations d'humidité de l'air : peu importante
Stabilité en service : faible (si le bois est contrefilé) à moyenne
Contrainte de rupture en compression parallèle* : 57 MPa
Contrainte de rupture en flexion statique* : 135 MPa
Module d'élasticité longitudinal* : 12 300 MPa

DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Dabéma présente une durabilité naturelle très variable, bonne à médiocre vis-à-vis des champignons de pourriture. La durabilité du bois diminue en effet du duramen externe vers le coeur (le coeur n'est pas plus résistant que l'aubier).

RÉSISTANCE NATURELLE AUX LYCTUS
Le duramen n'est pas attaqué par les Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le duramen du Dabéma présente une bonne durabilité vis-à-vis des termites de l'espèce Reticulitermes santonensis.

IMPRÉGNABILITÉ
Le duramen du Dabéma n'est pas imprégnable, même sous pression.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Comme la plupart des bois commerciaux durs et denses, le Dabéma se scie bien à condition d'utiliser du matériel puissant. L'emploi de lames stellitées est conseillé. Le taux de silice contenu dans le bois est négligeable (t<0,01%). L'odeur du bois est désagréable et ses poussières sont irritantes.

TRANCHEAGE ET DÉROULAGE
Le Dabéma se déroule sans difficulté, excepté pour les grumes présentant de gros noeuds. Il est conseillé d'étuver les bois à environ 85°C. Le séchage des placages est lent et irrégulier (présence de poches d'eau). Les risques de fentes sont faibles mais les placages peuvent présenter des
ondulations importantes. Le collage des placages avec des colles de type urée-formol et phénol-formol est satisfaisant. La pression de collage conseillée pour la fabrication de contreplaqué est comprise entre 1,5 et 1,8 MPa selon la densité du bois. Les contreplaqués obtenus à partir de placages de Dabéma présentent des qualités mécaniques élevées ainsi qu'une bonne durabilité naturelle (le cœur de faible durabilité n'est pas utilisé). Ils sont admis dans les spécifications techniques françaises de qualité pour la fabrication de panneaux destinés à des emplois extérieurs ou pour la réalisation de coffrages.

SÉCHAGE
Le Dabéma est un bois parfois difficile à sécher (risques de déformations sur les pièces présentant du contrefil irrégulier et risques de cémentation). Les meilleurs résultats sont obtenus en ressuyant les bois à l'air préalablement au séchage artificiel. La stabilisation des bois en fin de cycle est recommandée. Pour le séchage à l'air, les débits doivent être emplis sous abri ; il est également recommandé d'appliquer une charge sur les piles de bois afin d'éviter d'éventuelles déformations. Le séchage artificiel nécessite des précautions analogues à celles prises pour le séchage à l'air.

USINAGE
Le Dabéma se travaille facilement. Cependant comme tous les bois à contrefil important, il conviendra de maintenir les fers particulièrement bien affûtés et de choisir un angle d'attaque d'environ 15° pour garantir un état de surface non pelucheux. Son usinage peut générer des poussières parfois irritantes.

ASSEMBLAGE
Le Dabéma se cloue et se visse sans difficulté mais des risques de fentes ne sont cependant pas exclus aux extrémités des pièces. Les assemblages tiennent bien à l'arrachement. Les essais effectués avec des colles de type résorcine montrent que :
. la résistance au cisaillement dans les plans de collage est bonne,
. l'adhérence est légèrement inférieure à la moyenne des bois de même densité,
. la tenue dans le temps est correcte (test de délamination).
Avec les autres colles employées en industrie, le Dabéma ne présente pas de difficulté particulière.

FINITION
Le Dabéma se ponce, se peint et se vernit sans difficulté. Cependant, compte tenu de son grain grossier, le ponçage devra être effectué avec soin et un bouche-porage sera indispensable avant l'application de peinture ou de vernis.

CONCLUSIONS ET UTILISATIONS
L'odeur désagréable qu'il dégage à l'état frais, sa durabilité variable, les précautions à prendre lors de son séchage et de sa mise en œuvre, ainsi que sa médiocre stabilité en service sont autant de facteurs qui limitent actuellement la commercialisation de ce bois. Cependant, compte tenu de ses caractéristiques mécaniques satisfaisantes et de son abondance en forêt, le Dabéma demeure insuffisamment commercialisé et pourrait être systématiquement utilisé avec succès dans de nombreux emplois à condition :
. d'être commercialisé sous forme d'avivés,
Il peut être utilisé comme bois d’ossature, en menuiserie extérieure à peindre, en charpente, ou sous forme de panneaux en bois massif reconstitué pour des utilisations en structure.
DIBÉTOU

DÉNOMINATIONS

BOTANIQUES
Lovoa trichilioides Harms (= L. klaineana Pierre)
Famille des Méliacées

VERNACULAIRES ET COMMERCIALES
Côte-d'Ivoire, France : Dibétou
Ghana : Penkwa
Nigéria : Apopo, Akoko Igbo
Cameroun : Bibolo
Guinée Équatoriale : M'bero, N'vero
Gabon : Eyan, Diloto Fiote, Ombolo M'bolo
République Centre Africaine : Boyo Kondi, N'zima
Congo : Yonhi, Dikoyi
République Démocratique du Congo : Isirita, Lifaki Muindu, Sikitende, Voka Voka
Grande-Bretagne : African Walnut
U.S.A. : Tiger Wood

DESCRIPTION DU BOIS
Le bois parfait est brun jaunâtre ou grisâtre avec une teinte assez uniforme plus ou moins sombre, prenant un éclat brillant et doré en vieillissant. L'aubier bien différencié, blanc grisâtre, peut atteindre 5 cm de largeur. Le grain est moyennement fin. Les débits sur dosse ont un aspect assez homogène, avec de nombreuses traces vasculaires visibles, en partie obstruées par d'abondants dépôts noirs. Ils sont parfois veinés de fines lignes sombres (bandes tangentielles de canaux traumatiques). Les débits sur plein quartier sont plus ou moins finement rubanés par le contrefil. La maille est très fine. Le parenchyme, indiscernable à faible grossissement, est, d'une part associé aux pores, coiffant souvent l'un des côtés et formant de courts prolongements aliformes qui peuvent s'anastomoser entre pores voisins, et d'autre part, en cellules dispersées. Certaines cellules sont recloisonnées et cristallifères. Les pores sont diffus, isolés ou accolés radialement. Le diamètre des ponctuations intervasculaires est très petit, de l'ordre de 3 à 5 microns. Les rayons, larges de 3 à 4 cellules, sont au nombre de 4 à 6 par mm, de structure très homogène. Les fibres ont une longueur moyenne de 1600 microns, une largeur moyenne de 20-25 microns. Certaines fibres sont cloisonnées, parfois cristallifères.
PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

Le Dibétou est un bois léger, tendre à mi-dur. Ses retraits linéaires transverses sont faibles à moyens. Son retrait volumique est moyen. Ses résistances mécaniques sont faibles à moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 450 à 580 kg/m³
Dureté Monnin* : 2,3
Point de saturation des fibres : 27 %
Retrait volumique total : 10,9 %
Retrait tangential total : 5,8 %
Retrait radial total : 3,7 %
Sensibilité aux variations d'humidité de l'air : peu importante
Stabilité en service : bois stable
Contrainte de rupture en compression parallèle* : 47 MPa
Contrainte de rupture en flexion statique* : 80 MPa
Module d'élasticité longitudinal* : 8 400 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Dibétou présente peu de résistance vis-à-vis des champignons de pourriture. Il doit donc subir obligatoirement un traitement de préservation dans tous les emplois où un risque de réhumidification peut survenir. Cette essence est considérée comme moyennement durable à faiblement durable vis à vis des champignons lignivores (classe de durabilité : 3-4) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l'espèce Reticulitermes santonensis est faible. Cette essence est considérée comme sensible aux termites (classe de durabilité : S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme peu imprégnable à non imprégnable (classe d’imprégnabilité : 3-4) selon la norme NF EN 350-2.
CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Dibétou se scie sans difficulté. Pour cette opération, il est recommandé d’utiliser des lames en acier ordinaire ou en acier allié.

TRANCHEGE ET DÉROULAGE
Le Dibétou n’est pas déroulé de façon régulière. Il se tranche sans difficulté.

USINAGE
Le Dibétou est un bois tendre, assez facile à usiner. Le contrefil pose parfois des problèmes lors du rabotage et du toupillage. Dans ce cas, il est conseillé d’utiliser pour le rabotage des fers ayant un angle d’attaque compris entre 15° et 20°.

SÉCHAGE
Le Dibétou se sèche facilement et rapidement. Le séchage à l’air ne pose pas de problème particulier. Le séchage artificiel est assez rapide, avec très peu de risques d’apparition de défauts.

ASSEMBLAGE
Les assemblages traditionnels par clous et vis ne présentent pas de difficultés et ont une bonne tenue. Le Dibétou se colle facilement avec toutes les colles couramment employées dans l’industrie.

FINITION
Le bois se ponce facilement et donne un beau poli. Il se prête bien aux différentes finitions teintées et se vernit facilement.

CONCLUSIONS ET UTILISATIONS
Le Dibétou est un bois tendre qui se travaille facilement et qui présente des qualités esthétiques certaines. Bien que sa couleur rappelle celle du Noyer d’Europe ou d’Amérique, il en diffère par ses autres caractères et il n’est pas souhaitable de l’employer comme succédané de cette essence. Le Dibétou possède en lui-même suffisamment de qualités sans avoir recours à cette assimilation qui peut lui être préjudiciable. Il convient particulièrement en ébénisterie et en décoration. Il est apprécié pour les aménagements et la décoration intérieurs où il est utilisé aussi bien en massif qu’en placages et sous forme de contreplaqués. Il est aussi apprécié en ameublement. Il peut être employé pour les installations de magasins et de bureaux, le lambrissage et la décoration murale. Il convient également pour la fabrication d’objets tournés.
DOUSSIÉ

DENOMINATIONS

BOTANIQUES
Afzelia bipindensis Harms
Afzelia bella Harms var. gracilior Keay
Afzelia africana Smith
Afzelia pachyloba Harms
Famille des Césalpiniaècées

VERNACULAIRES ET COMMERCIALES
Cameroun : Edoussié, Njoc, Mbanga, Doussié “rouge” (A. bipendensis), Doussié “blanc” (A. pachyloba)
Côte D’ivoire : Azodau, Lingué
Gabon : Edoumeleu, Mounangala
Ghana : Papao
Nigeria : Arinyan, Orodo, Odo Niyang, Apa, Apa Igbo, Olutoko
République Centrafricaine : Katagba, Mokala
Congo, France, Pays-Bas : Doussié, Kokongo
République Démocratique du Congo : Boanga, Bolengu, Kipapa, Musole
Angleterre, Allemagne : Afzelia
Portugal : Chanfuta

DESCRIPTION DU BOIS

Le cœur et l’aubier sont bien différenciés. L’aubier est blanc jaunâtre, large de 3 à 8 cm. Le bois parfait, brun-rouge clair un peu orangé sur les débits récents et secs, vire ensuite au brun-rouge à la lumière. La teinte est normalement uniforme, mais peut être parfois coupée de veines sombres (A. bipendensis excepté). Le grain du bois est plutôt grossier, mais relativement homogène. Un peu de contrefil peut se noter sur les débits sur quartier. La maille est fine, légèrement brillante. Au rabotage, le bois sec dégage une odeur de cuir. Les pores sont disséminés, peu nombreux (2 à 5 par mm²) et gros (diamètre moyen très souvent supérieur à 200µ). Ils sont parfois obstrués par des dépôts blanchâtres ou colorés. Les ponctuations intervasculaires sont de l’ordre de 6-7 µ. Le parenchyme apparaît, d’une part en losange autour des pores et courtement anastomosé obliquement, d’autre part en lignes terminales fines. Au contact du tissu fibreux, les cellules sont souvent recloisonnées et cristallifères. Les rayons, au nombre moyen de 6-7 par mm, sont larges de 2 cellules, quelquefois 3, rarement 4. Leur structure est homogène. Les quatre espèces botaniques ne sont pas distinctes anatomiquement ; seule A. bipindensis peut se reconnaître, en lumière ultraviolette, par sa teinte amarante foncée, sans fluorescence jaune.
PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

Le Doussié est un bois mi-lourd à lourd, mi-dur à dur. Ses retraits linéaires transverses sont faibles. Son retrait volumique est moyen. Ses résistances mécaniques sont moyennes à fortes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 700 à 880 kg/m³
Dureté Monnin* : 7,5
Point de saturation des fibres : 20 %
Retrait volumique total : 8 %
Retrait tangentiel total : 4,4 %
Retrait radial total : 3 %
Sensibilité aux variations d'humidité de l'air : faible
Stabilité en service : bois stable
Contrainte de rupture en compression parallèle* : 74 MPa
Contrainte de rupture en flexion statique* : 138 MPa
Module d'élasticité longitudinal* : 13 700 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Doussié présente une très bonne résistance vis-à-vis des champignons de pourriture. Il est préconisé dans tous les emplois exposés, en cas d'humidification temporaire ou permanente, ou en contact avec le sol. Cette essence est considérée comme très durable vis à vis des champignons lignivores (classe de durabilité : 1) selon la norme NF EN 350-1. Elle couvre naturellement (sans traitement de préservation) la classe 4 de risque biologique.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l'espèce Reticulitermes santonensis est très bonne. Cette essence est considérée comme durable vis à vis des termites (classe de durabilité : D) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme non imprégnable (classe d'imprégnabilité : 4) selon la norme NF EN 350-2.

Remarque : En milieu marin, son emploi doit être déconseillé pour les ouvrages fixes exposés compte tenu de sa faible résistance aux foreurs marins.
CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Doussié est dur et légèrement abrasif ; il se scie facilement mais cette opération doit être menée lentement. De ce fait, il nécessite un matériel particulièrement puissant (scie à ruban avec volant de 2,40 m). Le stellitage ne s'impose pas si les bois sont débités frais, la tenue de coupe étant alors de l'ordre de 2 h. Certains sujets comportant des poches de résine désaffûtent assez rapidement les scies. Les sciures sont parfois un peu irritantes. La tenue de l'acier rapide est très bonne et des lames à dents amovibles en acier rapide sont tout à fait indiquées pour le déflingage.

SÉCHAGE
Le séchage du Doussié est facile et se fait dans d'excellentes conditions sans déformation ni fente ; il est cependant assez lent. Pour les bois de forte épaisseur (supérieures à 75 mm), il est conseillé de sécher préalablement les bois à l'air, sous abri.

USINAGE
En raison de sa teneur en silice négligeable et de son contrefil peu marqué, le Doussié est un bois qui ne pose pas de problèmes particuliers lors du dégauchissage, du rabotage, du moulurage, et des opérations ultérieures d'usinage. Toutefois lorsqu'un état de surface parfait est nécessaire, il est conseillé de diminuer l'angle d'attaque des outils de rabotage et de moulurage pour éliminer les problèmes posés par le contrefil.

ASSEMBLAGE
Les assemblages traditionnels par clous et vis tiennent de façon satisfaisante. Cependant, pour limiter les risques de fentes, des avant-trous sont recommandés. Le collage du Doussié donne des résultats irréguliers ; il est de ce fait déconseillé dans des conditions industrielles de fabrication.

FINITION
Le Doussié se peint et se vernit sans problème à condition qu'il soit parfaitement séché. Pour obtenir de meilleurs états de surface, un bouche-porage préalable est conseillé. La mise en teinte est rendue délicate par les dépôts blancs ou jaunâtres qui obstruent les pores.

CONCLUSIONS ET UTILISATIONS
Le Doussié est une essence particulièrement stable, très peu sensible aux variations d'humidité, et ayant de très faibles retraits linéaires. De plus, il est particulièrement durable. Pour ces raisons, il est très apprécié en construction navale de plaisance où il trouve de nombreux emplois, depuis la construction de la charpente (quille, étrave et membrures), jusqu'à la fabrication des ponts et des aménagements intérieurs. Dans ces emplois il est parfois aussi apprécié que le Teck. C'est également un excellent bois de menuiserie de haut de gamme, aussi bien intérieure qu'extérieure (portes d'entrée, fenêtres extérieures, portes-fenêtres, portes intérieures, escaliers, parquets, portes coupe-feu ...). Dans ces emplois il remplace le Chêne ou l'Iroko. Il est particulièrement apprécié comme bois d’environnement et en aménagement extérieur (portails, terrasses, vérandas, pergolas, passerelles, aires de loisir, mobilier et aménagement urbain, bungalows), ainsi que pour la construction de revêtements d'équipements sportifs (pistes cyclables, parquets de gymnase). Il est parfois préféré aux autres
matériaux (métaux, polymères synthétiques) pour la construction de cuves dans l'industrie en raison de sa bonne résistance naturelle vis-à-vis de nombreux produits chimiques (acides, bases et autres corrosifs) et de ses très faibles variations dimensionnelles.
ÉBIARA

DENOMINATIONS

BOTANIQUE
Berlinia bracteosa Benth.
Famille des Césalpiniacées

VERNACULAIRES ET COMMERCIALES
Cameroun : Abem, Essabem
Congo, Zaïre : M'Possa
Côte d'Ivoire : Pocouli, Melegba
Gabon : Ebiara, Obolo
Nigéria : Ekpogoi
Sierra Leone : Sarkpei
Allemagne, Pays-Bas, Royaume-Uni : Berlinia

DESCRIPTION DU BOIS

Le bois d'Ebiara est brun rosé à rougeâtre avec de nombreuses veines brun clair à gris violacé. Ces veines ne correspondent pas à des cernes d'accroissement, bien qu'en bout de billes, elles apparaissent comme des lignes irrégulièrement espacées, plus ou moins concentriques et anastomosées. Sa couleur est stable, elle évolue peu après exposition à la lumière. L'aubier est bien distinct, de couleur beige grisâtre, unié. Le grain du bois est assez fin. Le fil est souvent contrarié, ondulé, aussi bien dans le sens radial que tangentiel. Le contrefil est fréquent, parfois très irrégulier. Le bois renferme fréquemment des canaux traumatiques gommifères contenant une substance brun foncé assez dure. Ces canaux sont tantôt très groupés, tantôt en lignes concentriques.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

L'Ebiara est un bois mi-lourd et mi-dur. Ses retraits linéaires transverses sont faibles à moyens. Son retrait volumique est moyen. Ses résistances mécaniques sont faibles à moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

<table>
<thead>
<tr>
<th>Propriété</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masse volumique à l'état sec*</td>
<td>de 600 à 800 kg/m³</td>
</tr>
<tr>
<td>Dureté Monnin*</td>
<td>4</td>
</tr>
<tr>
<td>Point de saturation des fibres</td>
<td>28 %</td>
</tr>
<tr>
<td>Retrait volumique total</td>
<td>14,5 %</td>
</tr>
<tr>
<td>Retrait tangentiel total</td>
<td>7,8 %</td>
</tr>
<tr>
<td>Retrait radial total</td>
<td>3,8 %</td>
</tr>
<tr>
<td>Sensibilité aux variations d'humidité de l'air</td>
<td>peu à moyennement importante</td>
</tr>
<tr>
<td>Stabilité en service</td>
<td>moyenne</td>
</tr>
</tbody>
</table>
Contrainte de rupture en compression parallèle* : 57 MPa
Contrainte de rupture moyenne en flexion statique* : 103 MPa
Module d'élasticité longitudinal* : 10 400 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
L’Ebiara présente peu de résistance vis-à-vis des champignons de pourriture. Son utilisation est déconseillée dans tous les emplois présentant un risque de réhumidification.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l’espèce Reticulitermes santonensis est faible.

IMPRÉGNABILITÉ
L’Ebiara est faiblement imprégnable par les produits de préservation.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
L’Ebiara est un bois moyennement abrasif. Compte tenu de son fil très irrégulier, il est particulièrement conseillé d’employer des lames parfaitement affûtées pour éviter d’obtenir des surfaces de sciage fibreuses. L’utilisation de lames stellités est conseillée.

DÉROULAGE ET TRANCHAGE
De par ses qualités esthétiques, l’Ebiara constitue une bonne essence de tranchage, à condition d’éliminer les placages comportant des plages de canaux traumatiques gommifères. Il est assez difficile à dérouler, mais les placages obtenus ont également un aspect assez décoratif. Du fait de la masse volumique et de la dureté élevées du bois, il est recommandé d’étuver de façon prolongée les grumes afin de faciliter la production et d’améliorer la qualité des placages. A titre indicatif, un étuvage à la vapeur pendant 48 heures ou 54 heures à l’eau chaude (80°C) a donné des résultats positifs en conditions industrielles. L’Ebiara est difficile à dérouler : l’étuvage est indispensable mais les placages obtenus présentent de nombreuses plages de “fil soulevé”.

SÉCHAGE
Pour obtenir des résultats satisfaisants et limiter les risques de déformations, le séchage doit être conduit lentement.
USINAGE
Malgré sa dureté et son contrefil irrégulier, l'Ebiara est un bois qui se travaille sans problème particulier. Le contrefil est peu gênant. Le bois se rabote bien, mais lorsqu'un état de surface particulièrement soigné est recherché, il est conseillé d'utiliser des outils ayant un angle d'attaque faible (15-20°). Il se toupille, se tenonne et se tourne très bien.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis tiennent bien. En conditions industrielles, des avant-trous sont conseillés pour les pièces de faible section. Le collage donne d'excellents résultats et ne pose aucun problème avec toutes les colles utilisées couramment dans l'industrie.

FINITION
Dans tous les cas, les produits habituels de finition teintée ou vernie ne posent aucun problème quant à leur emploi sur cette essence. Lorsqu'un état de surface parfait est recherché, en particulier enameublement, on procèdera préalablement à un bouche porage ou à l'application d'un fond dur. L'application d'égaliseurs de teinte se fait sans difficulté.

CONCLUSIONS ET UTILISATIONS
L'Ebiara est un bois mi-lourd, mi-dur ayant d'assez bonnes caractéristiques physiques et mécaniques. Son retrait est relativement élevé et sa durabilité plutôt médiocre. Toutefois, ses qualités esthétiques peuvent être mises à profit en ameublement (massif ou plaqué), en décoration intérieure (panneaux décoratifs, lambris ...) ou en menuiserie intérieure apparente (aménagements intérieurs, agencement de magasins, escaliers, parquets ...). Les billes particulièrement figurées peuvent être tranchées sur quartier et donnent alors de beaux placages à condition d'éliminer ceux qui présentent des traces de gomme brunes. Le rendement matière obtenu pour cette essence est souvent inférieur à celui escompté à cause des plages de bois présentant des traces de canaux sécréteurs.
EKABA (EKOP)

DENOMINATIONS

BOTANIQUES
Tetraberlinia bifoliolata Haum., *Tetraberlinia tubmaniana* J. Léonard
Famille des Césalpiniacées

VERNACULAIRES ET COMMERCIALES
Cameroun : Eko-Ribi
Gabon : Eko-Andoung
Royaume-Uni : Tetraberlinia
France, Italie, Espagne, Pays-Bas : Ekaba
Allemagne : Ekop

DESCRIPTION DU BOIS

Le bois parfait d'Ekaba est brun clair à beige rosé parcouru par des veines irrégulières de teinte brun doré. En vieillissant, il prend une teinte plus claire rose cuivré. L'aubier est le plus souvent distinct, de couleur plus claire, et il n'est pas veiné. Le grain du bois est assez grossier, les traces de vaisseaux étant très nombreuses et bien marquées. Le fil est le plus souvent droit. Le contrefil est fréquent et assez accusé ; il donne aux débits sur quartier un rubanage régulier caractéristique rappelant celui des Méliacées (Acajou, ...). Les fractures transversales peu apparentes (coupes de vent) ne sont pas rares.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

L'Ekaba est un bois léger à mi-lourd, tendre à mi-dur. Ses retraits linéaires transverses sont moyens. Son retrait volumique est moyen à fort. Ses résistances mécaniques sont moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

- **Masse volumique à l'état sec** : de 500 à 750 kg/m³
- **Dureté Monnin** : 3
- **Point de saturation des fibres** : 27 %
- **Retrait volumique total** : 13 %
- **Retrait tangentiel total** : 7,8 %
- **Retrait radial total** : 4,1 %
- **Sensibilité aux variations d'humidité de l'air** : moyenne
- **Stabilité en service** : moyenne
- **Contrainte de rupture en compression parallèle** : 56 MPa
- **Contrainte de rupture moyenne en flexion statique** : 110 MPa
- **Module d'élasticité longitudinal** : 11 700 MPa
DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
L'Ekaba présente un faible résistance vis-à-vis des champignons de pourriture. Il doit subir obligatoirement un traitement de préservation dans tous les emplois où un risque de réhumidification existe. Il est déconseillé dans tous les emplois exposés à un risque d’humidification permanente ou prolongée.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l'espèce Reticulitermes santonensis est faible.

IMPRÉGNABILITÉ
L’Ekaba est moyennement imprégnable par les produits de préservation.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
L'Ekaba est pas siliceux et très peu abrasif. Il se scie facilement, d’autant plus rapidement que les bois sont très humides.

DÉROULAGE ET TRANCHAGE
Le déroulage se conduit dans des conditions voisines de celles de l'Okouné. Des irrégularités d'épaisseur du placage dans le sens perpendiculaire au fil du bois peuvent survenir, défauts que l’on élimine en augmentant légèrement l’angle de dépouille du couteau. Les billons présentant un contrefil marqué donnent des placages présentant des plages de "fil soulevé".
Ce défaut peut être atténué en diminuant l’épaisseur de coupe (10 à 15/10 mm), en affinant les réglages de la dérouleuse et en veillant à ce que la température du bois soit correcte (de 65 à 90°C selon la densité).
Le rendement obtenu en placages humides est d'environ 70 % avec des billes de qualité moyenne. La fabrication de contreplaqué à partir de l'Ekaba donne des produits de qualité satisfaisante avec un rendement légèrement inférieur à celui obtenu avec l'Okouné (de l'ordre de 5 à 10 %).
L'Ekaba n'est pas tranché actuellement, mais les rondins contrefilés donnent des placages rubanés qui, après teinture, peuvent être appréciés comme succédané de certaines essences semi-précieuses.
SÉCHAGE
Le séchage de l’Ekaba est rapide et facile. Les risques de déformations ne sont pas importants. En revanche, il est sensible aux gerces et des décolorations d’origine fongiques peuvent survenir très rapidement si les bois ne sont pas traités après sciage ou stockés trop longtemps avant séchage.

USINAGE
En raison de sa faible dureté et de sa teur en silice négligeable, l’Ekaba est un bois qui se travaille facilement et ne nécessite pas d’outillage au carbur. Toutefois, son grain plutôt grossier et son contrefil parfois accusé rendent difficile l’obtention d’un état de surface très satisfaisant. Il se rabote sans problème particulier, mais il est préconisé d’utiliser des outils ayant un angle d’attaque faible (15 à 20°). Il se tenonne assez bien, avec parfois quelques éclats. Il se moulure et se mortaise sans difficulté.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. Le collage du bois avec les colles habituellement utilisées dans l’industrie ne présente pas de difficulté particulière.

FINITION
La couleur du bois est le plus souvent uniforme et assez claire, mais il peut se teinter facilement et prendre alors une couleur plus soutenue qui le fait davantage apprécier. L’application de vernis ne pose pas de problème particulier.

CONCLUSIONS ET UTILISATIONS
L’Ekaba présenter un intérêt certain pour plusieurs secteurs d’utilisation des bois sous réserve de conditions de mise en œuvre satisfaisante. En premier lieu, l’industrie du contreplaqué peut l’employer pour la fabrication de contreplaqué courant ou pour les plis intérieurs. Le développement de cette utilisation serait certainement favorisé par l’application systématique d’un traitement de préservation sur les grumes dès l’abattage de façon à fournir une matière première saine à l’industriel, et par la sélection pour le déroulage des grumes présentant les bois les moins contrefilés. L’aspect beige plus ou moins ramage des contreplaqués obtenus constitue un certain handicap pour leur commercialisation. Par ailleurs, ses qualités physiques, mécaniques et esthétiques en font une essence intéressante en menuiserie intérieure (portes intérieures, placards …), éventuellement à peindre ou à teinter. Son utilisation en menuiserie extérieure est éventuellement possible sous réserve d’un traitement de préservation efficace.
EKOUNE

DÉNOMINATIONS

BOTANIQUES
Coelocaryon preussii Warb. (= *C. klainei* Pierre)
Famille des Myristicacées

VERNACULAIRES ET COMMERCIALES
Congo : Kikubilomba
Guinée équatoriale, Gabon : Ekoune, Ekun
République Démocratique du Congo : Lomba kumbi

DESCRIPTION DU BOIS

Le bois d'Ekoune est beige rosé clair, légèrement orangé. Sa teinte peut évoluer vers l'ocre avec un éclat lustré après exposition à l'air et à la lumière. Il peut présenter des veines légèrement plus foncées, brunes ou ocre soutenu. L'aubier est rarement discernable. Lorsqu'on peut le délimiter, c'est le plus souvent à la faveur d'une discoloration d'origine fongique (bleuissement). Son épaisseur varie de 2 à 4 cm. Le grain est fin, ce qui permet de le distinguer de l'Ilomba auquel il ressemble beaucoup. Le fil est très droit. Le contrefil est inexistant. Les débits présentent un aspect plus ou moins uniforme, parfois veiné. Les placages ont une teinte assez uniforme, peu figurée.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

L'Ekoune est un bois léger et tendre. Ses retraits linéaires transverses sont faibles à moyens. Son retrait volumique est moyen. Ses résistances mécaniques sont faibles à moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12% (norme française NF B 51-002).

- Masse volumique à l'état sec* : de 450 à 600 kg/m3
- Dureté Monnin* : 1,8
- Point de saturation des fibres : 25 %
- Retrait volumique total : 10 %
- Retrait tangentiel total : 6,9 %
- Retrait radial total : 3,8 %
- Sensibilité aux variations d'humidité de l'air : moyenne
- Stabilité en service : moyenne
- Contrainte de rupture en compression parallèle* : 38 MPa
- Contrainte de rupture moyenne en flexion statique* : 82 MPa
- Module d'élasticité longitudinal* : 10 000 MPa
DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
L’Ekoune présente une très faible résistance vis-à-vis des champignons de pourriture. Il doit donc subir obligatoirement un traitement de préservation dans tous les emplois en cas d’humidification temporaire. Il est déconseillé dans tous les emplois exposés à un risque d’humidification permanente ou prolongée.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l’espèce Reticulitermes santonensis est très faible.

IMPRÉGNABILITÉ
L’Ekouné est facilement imprégnable par les produits de préservation. Il est indispensable d'appliquer un traitement efficace sur le bois à tous les stades de transformation.

CARACTERISTIQUES DE MISE EN OEUVRE
L'utilisation de l’Ekoune en massif est très peu développée bien qu'il convienne très bien à la fabrication de menuiseries intérieures et de meubles à peindre ou à teinter.

SCIAGE
L’Ekoune se scie facilement. Etant très peu abrasif et relativement léger, il ne nécessite pas l’utilisation d’équipement puissant ni de de stellitage. La tenue de coupe des lames en acier ordinaire ou faiblement allié est très suffisante même dans une scierie industrielle.

SÉCHAGE
L’Ekoune se sèche sans difficulté, rapidement, avec peu de risques de fentes ou de déformations.

USINAGE
Les qualités technologiques de l’Ekoune (fil droit, contrefil inexistant, très faible abrasivité...) en font un bois qui se travaille très bien, facilement et donne de très bons états de surface. Il ne nécessite ni outils à mise rapportée de carbure, ni équipement de forte puissance.
DÉROULAGE ET TRANCHE

En raison de la bonne conformation générale des rondins et des qualités physiques et mécaniques du bois, l’Ekoune convient très bien à la fabrication de placages et de panneaux de contreplaqués. Lorsque les rondins sont de coupe très fraîche, l’étuvage n’est ni indispensable, ni recommandé. Dans le cas contraire, un étuvage doux est souhaitable. A titre indicatif, un étuvage à la vapeur pendant 16 à 24 heures a donné de bons résultats dans des conditions industrielles. L’Ekoune se déroule très bien dans des conditions sensiblement identiques à celles utilisées pour le déroulage de l’Okoumé. Les rondins frais et correctement conservés (en particulier grâce à un traitement juste après l’abattage) donnent un rendement très satisfaisant compte tenu de leur diamètre souvent relativement faible (environ 2/3 de faces pour 1/3 de plis intérieurs). En outre, les placages minces (1 à 1,2 mm) présentent l’avantage de moins se déchirer que ceux plus épais. Leur qualité peut être améliorée en augmentant légèrement le taux de compression de la dérouleuse. L’Ekoune se prête bien à la fabrication de placages tranchés sur quartier. Les placages ainsi obtenus ont un grain fin, et une couleur claire agréable, parcourue de veines peu distinctes. Ils conviennent bien en ameublement, éventuellement après finition cirée, vernie ou teintée.

ASSEMBLAGE

Les clous, vis, agrafes et chevilles métalliques s’enfoncent facilement et ont une bonne tenue. Cependant, le bois étant assez fendif, les pointes de fort diamètre sont à éviter sur les pièces de faible section, ainsi que l’alignement de plusieurs pointes rapprochées dans le sens du fil. Le bois se colle sans aucune difficulté avec tous les types de colle couramment employés dans l’industrie (vinylique, urée formol, phénolique...).

FINITION

Au ponçage, le bois prend un très beau poli. L’Ekoune se teinte très aisément ce qui lui confère des qualités esthétiques appréciées en ébénisterie. Il se peint et se vernit avec les produits couramment employés dans l’industrie (peintures-laques, vernis cellulosique, polyuréthane...).

CONCLUSIONS ET UTILISATIONS

L’Ekoune est un bois assez tendre, relativement léger, de fil très droit, très facile à travailler, pouvant prendre un très beau poli et avoir un aspect clair apprécié. Sa durabilité naturelle est très faible et un traitement de préservation est toujours indispensable dans tous les emplois en cas d’humidification temporaire. Sous réserve d’une mise en œuvre adéquate, le bois convient de façon intéressante pouvant convenir pour une large gamme d’emplois. Il convient très bien en déroulage et pour la fabrication des panneaux de contreplaqué. Il est très apprécié pour la fabrication de panneaux décoratifs destinés à l’ameublement et à la décoration intérieure. Il se prête très bien à la fabrication de placages de parement et pourrait ainsi remplacer l’Okoumé avec des rendements comparables. Ses qualités technologiques en font un bois pour la fabrication de moulures, de baguettes, de plinthes, d’éléments de menuiserie intérieure (portes, agencements ...) Il se teint facilement et peut parfaitement convenir en ameublement rustique, pour la fabrication de meubles à peindre ou à laquer (meubles d’enfants, placards, meubles de bureau ...) ou pour la fabrication de jouets (jouets en bois brut ou peints), concurrençant ainsi le Hêtre.
FARO

DÉNOMINATIONS

BOTANIQUES
Famille des Césalpiniacées

VERNACULAIRES ET COMMERCIALES
Congo : Singa N'Dola
Côte d'Ivoire : Faro
Gabon : Lonlavioi
Guinée équatoriale : N'Su
République Démocratique du Congo : Bolengu
Allemagne : Daniellia
Pays-Bas, Royaume-Uni : Ogea

DESCRIPTION DU BOIS

Le bois parfait du Faro est de couleur beige rosé à éclat nacré, irrégulièrement parcouru de veines brun verdâtre mal délimitées. Il est parfois légèrement résineux à l'état vert. L'aubier, lorsqu'il est distinct, est de couleur blanc jaunâtre. Le grain est plutôt grossier. Les pores paraissent assez régulièrement répartis et les traces vasculaires roses ressortent sur le fond clair du bois. Le fil est le plus souvent droit, ou légèrement ondulé. Le contrefil fréquent est généralement léger et peut donner un aspect pelucheux au bois. Les fractures transversales peu apparentes (coups de vent) sont fréquentes. Sur les placages déroulés, les veines verdâtres produisent des figures mal délimitées et peu appréciées.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Faro est un bois très léger à léger, tendre à mi-dur. Ses retraits linéaires transverses sont faibles à moyens. Son retrait volumique est moyen. Ses résistances mécaniques sont faibles.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 450 à 650 kg/m³
Dureté Monnin* : 2,3
Point de saturation des fibres : 30 %
Retrait volumique total : 14 %
Retrait tangentiel total : 6,7 %
Retrait radial total : 3,5 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : moyenne
Contrainte de rupture en compression parallèle*: 36 MPa
Contrainte de rupture moyenne en flexion statique*: 72 MPa
Module d'élasticité longitudinal*: 7 700 MPa

DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Faro présente une très faible résistance vis-à-vis des champignons de pourriture. Il est déconseillé dans tous les emplois exposés à un risque d'humidification permanente ou prolongée. Cette essence est considérée comme faiblement durable à non durable vis à vis des champignons lignivores (classe de durabilité : 4-5) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l'espèce Reticulitermes santonensis est moyenne. Cette essence est considérée comme sensible aux termites (classe de durabilité : S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme moyennement imprégnable à peu imprégnable (classe d'imprégnabilité : 2-3) selon la norme NF EN 350-2.

CARACTÉRISTIQUES DE MISE EN ŒUVRE

SCIAGE
Les grumes de Faro se scient facilement et le bois n'est pas abrasif, malgré une évacuation des copeaux parfois difficile.

DÉROULAGE ET TRANCHE
L'excellente conformation des grumes ainsi que les caractéristiques physiques du Faro en font un bois convenant à la fabrication de placages déroulés et de panneaux de contreplaqués. Néanmoins, il présente certains inconvénients (séchage irrégulier, aspect esthétique peu recherché) qui en limitent l'emploi à la production de plis intérieurs.

En raison de la faible masse volumique du bois, les grumes de Faro fraîchement abattues peuvent être déroulées sans étuvage préalable. Dans le cas contraire, un léger étuvage en vapeur détendue pendant 12 à 24 heures est très suffisant pour obtenir un placage de bonne qualité. Les réglages de la dérouleuse sont identiques à ceux nécessaires pour l'Okoumé, avec toutefois un taux de compression légèrement augmenté comme c'est le cas avec l'Ihomba et le Kondroiti. Il est relativement facile d'obtenir des placages épais à partir de cette essence.

Le tranchage ne pose pas de problème techniques ; un étuvage en eau chaude (80°C) pendant 36 heures
environ, donne des résultats satisfaisants. Il donne des placages souples et peu fendus, utilisés en remplacement de l'Okoumé pour le placage des contreparements de meubles plaqués d'Acajou ou d'essences similaires.

SÉCHAGE
Le Faro sèche assez vite et sans défaut majeur. Quelques déformations et un léger collapse peuvent apparaître sur les pièces de forte épaisseur ou débitées en pleine dosse.

USINAGE
Le Faro se travaille très facilement, et ne désaffûte que très peu les outils. Toutefois, en raison du léger contrefil, les états de surface ont généralement tendance à être assez pelucheux, notamment lors du moulurage ou du rabotage. Néanmoins il se ponce assez facilement mais prend alors un aspect terne.

ASSEMBLAGE
Les clous, vis, agrafes et chevilles métalliques s'enfoncent facilement et ont une bonne tenue. Le collage du bois avec les colles habituellement utilisées dans l’industrie ne présente pas de difficultés particulières.

FINITION
Malgré les risques d’états de surface pelucheux, le bois se peint sans difficulté : les finitions laquées ainsi que les finitions vernies sont cependant délicates. Toutefois, les vernis cellulosiques appliqués après un ponçage soigné donnent des résultats satisfaisants.

CONCLUSIONS
Le Faro est un bois tendre et léger, mais de très faible durabilité. Un traitement de préservation est donc indispensable pour tous les emplois. À condition d’appliquer aux grumes un traitement de préservation immédiatement après l’abattage, le Faro constitue avant tout une essence de déroulage pour la fabrication de panneaux de contreplaqués courants ou de coffrage (à condition toutefois de traiter les placages). Il peut donner des placages utilisables en remplacement de l’Okoumé en contreface de panneaux décoratifs pour la fabrication de meubles courants.
Il convient très bien à la fabrication de caisses à claire-voie pour l'emballage, et de caissettes et de cageots pour fruits et légumes. Dans ces derniers cas, il est nécessaire d’éviter d'appliquer un traitement de préservation ou d'employer des produits non toxiques. Dans tous ces emplois il peut remplacer certains bois résineux ou autres bois légers équivalents. Il peut également être utilisé en menuiserie intérieure (âmes de portes isoplanes, étagères, meubles de rangement ...).
FRAMIRÉ

DENOMINATIONS

BOTANIQUE
Terminalia ivorensis A. Chev.
Famille des Combretacées

VERNACULAIRES ET COMMERCIALES
Sierra Leone, Libéria : Bajii
Cameroun : Lidia
Côte d'Ivoire : Framiré
Ghana : Emeri
Nigéria : Idigbo, Black Afara
Royaume-Uni : Idigbo

DESCRIPTION DU BOIS

Le bois de Framiré est jaune paille à brun jaunâtre. L’aubier est légèrement plus clair et se distingue mal du bois parfait. Les cernes d’accroissement sont fréquemment visibles ; ils donnent parfois aux débits sur dosse ou aux placages un aspect de chêne clair. Le contrefil est très rare, peu marqué et irrégulier, donnant alors un léger rubanage aux débits sur quartier. Assez rarement, certaines billes donnent un bois de teinte brun rosé clair (Framiré rose). Des fractures transversales peu apparentes (coups de vent) sont parfois observées. Certaines billes de très fort diamètre présentent du coeur mou.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Framiré a des propriétés relativement constantes. Il est léger, tendre et stable. Ses retraits linéaires transverses sont faibles ainsi que son retrait volumique. Ses résistances mécaniques sont faibles à moyennes.

Nota : les valeurs ci-après précédées d’un astérisque correspondent à un taux d’humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l’état sec* : de 450 à 600 kg/m³
Durée Monnin* : 1,9
Point de saturation des fibres : 27 %
Retrait volumique total : 9,9 %
Retrait tangentiel total : 5,4 %
Retrait radial total : 3,7 %
Sensibilité aux variations d’humidité de l’air : faible
Stabilité en service : bonne
Contrainte de rupture en compression parallèle*: 44 MPa
Contrainte de rupture en flexion statique* : 79 MPa
Module d’élasticité longitudinal* : 9 200 MPa
DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Framiré présente une résistance moyenne vis-à-vis des champignons de pourriture. Il peut être employé sans traitement de préservation dans les emplois peu exposés aux agents de dégradation biologique, mais doit être obligatoirement traité dans tous les emplois où un risque de réhumidification existe (aubier peu différencié du bois parfait). Cette essence est considérée comme moyennement durable à durable vis à vis des champignons lignivores (classe de durabilité : 2-3) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l’espèce Reticulitermes santonensis est faible. Cette essence est considérée comme sensible aux termites (classe de durabilité : S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme non imprégnable (classe d’imprégnabilité : 4) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Framiré est un bois peu abrasif. Il se scie sans difficulté particulière. Cependant, les bois issus de plantation pouvant développer des contraintes de croissance, il est recommandé de les scier en utilisant les techniques habituelles pour pallier ce type de défaut (sciage symétrique, par retournement, débit de grumes de courte longueur, ...).

DÉROULAGE ET TRANCHE
Le Framiré convient bien à la fabrication de placages et de contreplaqués. Lorsque les rondins sont de coupe fraîche, l’étuvage n’est pas indispensable. Dans le cas contraire, l’étuvage de rondins à la vapeur à 80-90°C pendant quatre à cinq jours donne des résultats satisfaisants. Le déroulage du Framiré ne présente aucune difficulté particulière et se conduit de façon sensiblement identique à celui de l'Okoumé, avec un rendement équivalent. Le séchage des placages se fait dans les mêmes conditions que pour l'Okoumé, mais il est légèrement plus lent.
SÉCHAGE
Le Framiré sèche rapidement et sans difficulté, aussi bien à l'air libre qu'en séchoir. Les risques de déformations et de fentes sont pratiquement inexistants.

USINAGE
En raison de sa faible dureté, de sa très faible teneur en silice, et de son contrefil peu marqué, le Framiré est un bois dont l'usinage (dégauchissage, rabotage, moulurage, tenonnage, mortaisage, perçage) ne pose pas de problème particulier. Cependant, lorsqu'un parfait état de surface est requis, notamment en ameublement, il est conseillé de diminuer l'angle d'attaque des outils, en particulier pour les débits sur quartier comportant du contrefil.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l'industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION
Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie. Lorsqu'un parfait état de surface est recherché, en particulier en ameublement, l’application d’un fond dur ou un bouche-porage est conseillé. L’application d’égaliseurs de teinte se fait sans difficulté.

CONCLUSIONS ET UTILISATIONS
Le Framiré présente des caractéristiques technologiquement intéressantes ; c’est un bois relativement léger, se séchant et s’usinant sans difficulté, d’assez bonne durabilité, d’aspect agréable et dont la couleur claire est appréciée. Il constitue de ce fait un excellent bois de menuiserie et d’aménagement intérieur. Il convient également à la fabrication de moulures et en ameublement. Il peut être utilisé pour la fabrication de panneaux de porte, tablettes, étagères, produits d’agencement, ainsi qu’en revêtement mural intérieur (lambris). Après traitement, il peut être utilisé en menuiserie extérieure (croisées, portes croisées, portes d'entrée). Le Framiré convient bien à la fabrication de placages et de contreplaqués.
FUMA / FROMAGER

DENOMINATIONS

BOTANIQUE

Ceiba pentandra Gaertn. (famille des Bombacacées)

VERNACULAIRES ET COMMERCIALES

Cabinda, Congo, République Démocratique du Congo : M’Fuma
Cameroun, Guinée équatoriale, Gabon : Doum, Bouma, Odouma
Côte d'Ivoire, Ghana : Enia, Onyina
Côte d'Ivoire, Guinée Conakry : Fromager
Libéria : Ghé
Nigéria : Araba, Okha
Allemagne, Belgique, Pays-Bas : Fuma
Angleterre, Etats-Unis : Ceiba
Belgique : Kapokier
France : Fromager
Pays-Bas : Kankantrie

DESCRIPTION DU BOIS

Le bois de Fuma est très clair, blanc rosé ou jaunâtre avec des veines mal délimitées de teinte beige. Cette couleur est très sensible aux altérations. L’aubier est très peu distinct. Le grain est plutôt grossier, avec des pores peu abondants, et irrégulièrement disséminés en raison du fil assez fréquemment contrarié. Les débits sur dosse ou sur quartier ont un aspect peu homogène, avec des figurations irrégulières, des vaisseaux dispersés et un fil tourmenté. Les placages déroulés présentent des figurations peu marquées jaunâtres et brunâtres.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

Le Fuma est un bois très léger. Ses retraits linéaires transverses, son retrait volumique ainsi que ses caractéristiques mécaniques sont faibles.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec*: de 200 à 450 kg/m3
Dureté Monnin*: 0,8
Point de saturation des fibres : 34 %
Retrait volumique total : 12 %
Retrait tangentielly total : 6,3 %
Retrait radial total : 3 %
Sensibilité aux variations d'humidité de l'air : moyenne à élevée
Stabilité en service : moyenne à faible
Contrainte de rupture en compression parallèle* : 22 MPa
Contrainte de rupture en flexion statique* : 40 MPa
Module d'élasticité longitudinal* : 4 150 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Fuma n’est pas résistant vis-à-vis des champignons de pourriture. Les champignons de discoloration et d’échauffure peuvent attaquer le bois dès l'abattage de l'arbre. Les grumes doivent donc être évacuées le plus rapidement possible des chantiers d’abattage. Les bois doivent être traités à chaque étape de leur transformation puis lors de la mise en oeuvre, quel que soit leur emploi. Cette essence est considérée comme non durable vis à vis des champignons lignivores (classe de durabilité : 5) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait n’est pas résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l'espèce Reticulitermes santonensis est très faible. Cette essence est considérée comme sensible aux termites (classe de durabilité : S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme imprégnable (classe d’imprégnabilité : 1) selon la norme NF EN 350-2.

Remarque : les insectes tels que Scolytes et Platypes peuvent provoquer sur les bois frais des attaques graves (piqûre noire) ; une fois mis en oeuvre, le Fuma est très sensible à tous les types d’attaques d’insectes (Bostryches, etc.) ; de ce fait, quel que soit l’emploi auquel il est destiné, il doit recevoir un traitement de préservation efficace pour lui assurer une durabilité satisfaisante contre tous les types d'attaque biologique.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le bois présente un très faible taux de silice. Il est très peu abrasif et son sciage est relativement facile ; l’outillage en acier, même faiblement allié, est suffisant, mais les bois sciés sont souvent pelucheux. L’évacuation des copeaux peut poser des problèmes. Les meilleurs résultats sont obtenus avec une denture en acier rapide ayant un angle d'attaque de 30 à 35° et un angle de dépouille de 8°.
DÉROULAGE ET TRANCHAGE

L'utilisation en déroulage du Fuma s’est largement développée, notamment pour la fabrication de panneaux LVL (Laminated Veneer Lumber, panneaux à plis parallèles).

Les grumes doivent être efficacement traitées contre les attaques biologiques pendant leur acheminement du lieu d'exploitation aux unités de transformation.

En raison de sa faible masse volumique, le Fuma peut être déroulé sans étuvage préalable. Du fait de la très faible résistance du bois aux attaques biologiques, il est indispensable de traiter les placages avec un produit de préservation approprié. La pulvérisation de produits hydrosolubles sur les placages frais semble être une solution satisfaisante qui permet un traitement efficace des placages.

L'opération de déroulage se conduit de façon analogue à l'Okoumé étuvé. Les placage obtenus sont très souples et de bonne qualité. Pour limiter l’aspect pelucheux des placages, en particulier pour les placages de forte épaisseur (3 mm), il est conseillé de maintenir les couteaux parfaitement affûtés et d’utiliser un angle de bec important (60°- 65°) pour la barre de pression. Si les bois sont dans un bon état de conservation, le rendement matière peut être élevé car les rondins sont très cylindriques et leur diamètre assez important. Le séchage des placages se fait dans les mêmes conditions que pour l'Okoumé, mais il est sensiblement plus lent en raison des risques de gerces.

Lors de la fabrication de panneaux, il est recommandé de diminuer légèrement la pression de serrage par rapport aux conditions habituelles (une pression de 8 kg/cm² peut être conseillée) et il est nécessaire pour déterminer l’épaisseur finale des panneaux de tenir compte de l’écrasement des feuilles lors du pressage. Le tranchage du Fuma ne présente pas d’intérêt industriel, excepté éventuellement pour la fabrication d’éléments en contreplaqué moulé (sièges ...).

SÉCHAGE

Le séchage de pièces massives de Fuma est relativement lent du fait de la grande quantité d'eau contenue dans le bois. Les risques de fentes et de collapse sont limités, mais les pièces ont tendance à se voiler en cours de séchage, d’où la nécessité de prendre les précautions d’usage (application d’une charge sur les piles, application de produits anti-fentes aux extrémités des planches ...).

USINAGE

L’emploi d’outils parfaitement affûtés est indispensable pour obtenir de bons états de surface et limiter les risques de bois pelucheux. L’angle d’attaque des outils doit être élevé et les bois usinés doivent être très secs.

ASSEMBLAGE

Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté mais ont une tenue médiocre. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION

Le bois se peint et se vernit sans difficulté avec les produits de finition utilisés dans l’industrie.
CONCLUSIONS ET UTILISATIONS

Le Fuma est un bois très tendre et très léger, et dont la durabilité naturelle est très faible. Un traitement de préservation est indispensable à chaque étape de sa transformation. C’est avant tout une bonne essence de déroulage utilisée pour la fabrication de contreplaqué et de panneaux LVL.

Ce bois est parfois utilisé pour la fabrication de panneaux de contreplaqué décoratifs, mais surtout pour la fabrication de contreplaqué courant destiné à la réalisation de caisses d'emballage ainsi que pour tous les emplois faiblement sollicités mécaniquement. Il est parfois utilisé pour certains emplois spéciaux (semelles épaisses de chaussures fantaisie, jouets, modèles réduits) comme succédané du Balsa.
GHÉOMBI

DENOMINATIONS

BOTANQUES
Sindoropsis letestui J. Léonard (= Copaifera letestui Pellegr.)
Famille des Césalpiniacées

VERNACULAIRES ET COMMERCIALES
Gabon : Gheombi

DESCRIPTION DU BOIS

Le bois parfait de Ghéombi est brun rosé, devenant brun rougeâtre à reflets cuivrés, et parcouru de veines brunes à verdâtres peu distinctes. L'aubier est distinct, assez large, blanchâtre rosé à l'état frais devenant gris à brun clair après séchage. Le grain est plutôt grossier. Le contrefil n'est pas très fréquent, mais irrégulier. Le fil est assez droit, mais fréquemment ondulé par places ce qui confère aux débits un aspect moiré caractéristique. Le bois contient des canaux résinifères longitudinaux disposés en anneaux concentriques dispersés aussi bien dans l'aubier que dans le bois parfait. Cependant, les exsudations de résine ne sont pas très abondantes. Des fractures transversales peu apparentes (coups de vent) sont parfois observées.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Ghéombi est un bois mi-lourd et mi-dur. Ses retraits linéaires transverses sont faibles à moyens. Son retrait volumique est moyen à élevé ainsi que ses caractéristiques mécaniques.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 650 à 800 kg/m³
Dureté Monnin* : 5,5
Point de saturation des fibres : 22 %
Retrait volumique total : 12,5 %
Retrait tangentiel total : 6,8 %
Retrait radial total : 3,7 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : moyenne
Contrainte de rupture en compression parallèle* : 61 MPa
Contrainte de rupture en flexion statique* : 127 MPa
Module d'élasticité longitudinal* : 15 000 MPa
DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Ghéombi présente une résistance moyenne vis-à-vis des champignons de pourriture. Il doit donc subir obligatoirement un traitement de préservation dans tous les emplois où un risque de réhumidification existe. Il est déconseillé dans tous les emplois exposés à un risque d’humidification permanente ou prolongée.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait n’est pas résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l’espèce Reticulitermes santonensis est moyenne.

IMPRÉGNABILITÉ
Le Ghéombi est moyennement imprégnable par les produits de préservation.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Ghéombi présente un effet désafûtant assez élevé. L’utilisation de dentures stellitées est conseillée. Certains bois sont particulièrement résineux et provoquent un encrassement rapide des lames ce qui occasionne des défauts de sciage.

DÉROULAGE ET TRANCHE
Bien que le bois soit assez résineux, il peut être employé en contreplaqué à usage intérieur ; sa faible durabilité ne permet pas d’envisager son utilisation en contreplaqué extérieur. L’étuvage des billons est indispensable pour obtenir des placages de qualité acceptable. L’épaisseur des placages doit être comprise entre 12 et 20/10 mm car les placages plus épais sont très fendus et pelucheux, et l’aspect des placages minces n’est pas satisfaisant pour une utilisation en parement du fait de la présence fréquente de poches de résine.
Les qualités esthétiques de cette essence ne justifient pas son emploi en tranche, l’aubier étant de plus assez large. Certaines billes de bois "frisé" peuvent cependant fournir des placages tranchés d'aspect recherché.

SÉCHAGE
Le séchage du Ghéombi est lent. Afin de limiter les risques de déformations (voilement, gauchissement), notamment pour les pièces débitées sur dosse et de faible épaisseur, un ressuyage à l'air est conseillé pour ramener les bois vers 15-20 % d’humidité.
Un séchage artificiel jusqu’à 8-10 % peut être ensuite pratiqué.
USINAGE
Les surfaces des bois usinés sont souvent pelucheuses et présentent parfois des taches de résine. Le fil du bois est parfois très ondulé ou irrégulier ce qui pose parfois des problèmes lors du rabotage et du moulurage.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé) soient respectées.

FINITION
Les tâches de résine posent parfois des problèmes lors de l’application de peinture ou de vernis.

CONCLUSIONS ET UTILISATIONS
Le Ghéombi est une essence spécifiquement gabonaise. Elle n’est pas abondante et reste de ce fait une essence de complément. Les rendements obtenus ne sont pas très élevés du fait de la largeur de l’aubier, de la présence de poches de résine et des déformations des bois durant le séchage. Le Ghéombi convient principalement en menuiserie et en aménagement intérieur (portes intérieures, placards, étagères, éléments d’agencement). Il peut être utilisé également en parquet traditionnel ou mosaïque, ainsi qu’en charpente. Il peut convenir pour la fabrication de contreplaqué intérieur.
GOMBÉ

DENOMINATIONS

BOTANIQUES

Didelotia africana Baill.
Didelotia idae Oldeman, de Witt, J. Léonard
Didelotia letouzeyi Pellegr.
Famille des Césalpiniaèes

VERNACULAIRES ET COMMERCIALES

Cameroun : Ekop-Gombé
Côte-d'Ivoire : Broutou
Gabon : Angok
Liberia : Bondu
Sierra Leone : Timba

DESCRIPTION DU BOIS

L'aubier est blanchâtre à jaunâtre. Le bois parfait est rose saumon avec parfois quelques veines brun verdâtre. Le fil du bois est généralement droit ou parfois légèrement contrefilé.
Le grain est grossier. A l'état frais, le bois de Gombé présente une odeur légèrement poivrée.
A la loupe (grossissement x 15) on peut observer :
. des pores rares (2 à 5 par mm²) assez gros (170 à 250µ), isolés à contour ovalaire ou accolés radialement par 2 ou 3 ;
. du parenchyme moyennement abondant, en gaine losangique autour des pores, et sporadiquement en fines lignes terminales ;
. des rayons unisériés ou bisériés, très petits, au nombre de 9 par mm en moyenne, de structure très légèrement hétérocellulaire.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

Le Gombé est un bois léger, tendre, présentant des retraits linéaires moyens. Son retrait volumique est moyen. Ses résistances mécaniques sont faibles à moyennes.
Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec : de 570 à 690 kg/m³
Densité basale : 0,50
Dureté Monnin : 2,2
Point de saturation des fibres : 32 %
Retrait volumique total : 13 %
Retrait tangentiel total : 8,6 %
Retrait radial total : 4,8 %
Sensibilité aux variations d'humidité de l'air : peu importante
Stabilité en service : bois stable
Contrainte de rupture en compression parallèle* : 54 MPa
Contrainte de rupture moyenne en flexion statique* : 101 MPa
Module d'élasticité longitudinal* : 11 600 MPa

DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
La résistance naturelle du Gombé aux champignons de pourriture fibreuse (Lentinus squarrosulus, Coriolus versicolor) est faible à moyenne. De même, sa durabilité vis-à-vis des agents de pourriture cubique (Antrodia sp.) est faible. Dans la pratique, il est nécessaire de traiter les bois pour les emplois à risques tels que les menuiseries extérieures de bâtiments. Au contact du sol ou en présence de sources d'humidité fréquentes, le Gombé est déconseillé même après traitement.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait n’est pas attaqué par les Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le Gombé présente une faible résistance vis-à-vis des termites de l’espèce Reticulitermes santonensis.

IMPRÉGNABILITÉ
L’imprégnabilité du bois de Gombé est faible. Pour les emplois extérieurs sous abri, un traitement efficace est nécessaire et obligatoire si l’on désire une bonne pérennité des ouvrages (traitement par autoclave en double-vide).

CARACTÉRISTIQUES DE MISE EN ŒUVRE

SCIAGE
Le Gombé se scie facilement. Le taux de silice du bois est négligeable (t < 0,05%). Le rendement au sciage est généralement satisfaisant bien que certaines grumes présentent un aubier important.

TRANCHAGE ET DÉROULAGE
Le Gombé se déroule habituellement sans difficulté. Les grumes doivent être étuvées à environ 80°C. Le séchage des placages peut présenter des difficultés (risques de fentes). Le collage des placages avec des collés de type urée-formol ou phénol-formol est satisfaisant. La pression de collage recommandée pour la fabrication de contreplaqué est comprise entre 1,4 et 1,6 MPa. Les contreplaqués de Gombé ont bonne résistance mécanique.
Le Gombé se tranche sans difficulté et donne des placages dont l’aspect est recherché.
SÉCHAGE

Le séchage à l'air et le séchage artificiel du Gombé ne posent pas de problèmes particuliers, sans développement de défauts importants, à condition d'utiliser une table de séchage “lente” (risque de fentes et de cémentation pour les fortes épaisseurs).

USINAGE

Le Gombé se travaille sans difficulté particulière. Certaines pièces pouvant présenter du contrefil, il est conseillé de maintenir les fers bien affûtés si l'on désire un bon état de surface après usinage.

ASSEMBLAGE

Le Gombé se cloue, se visse et s'agrafe sans difficulté. La résistance mécanique des assemblages est satisfaisante.

Le collage est satisfaisant avec toutes les colles employées couramment dans l'industrie.

FINITION

Peintures, vernis et lasures peuvent être appliqués sans difficulté.

CONCLUSIONS ET UTILISATIONS

La production de Gombé est actuellement limitée par une faible demande qui pourrait se développer compte tenu :

. de sa disponibilité dans certaines régions, comparable à celle d'essences fréquemment exploitées et commercialisées ;
. de ses caractéristiques technologiques intéressantes ;
. de son aspect décoratif.

En raison de ses propriétés technologiques et de ses facilités de mise en oeuvre, le Gombé peut convenir pour la fabrication de menuiseries extérieures (en zone tempérée et avec traitement de préservation), de meubles et sièges, de charpentes, de maisons à ossature bois, de panneaux décoratifs, de parquets industriels et de fonds de wagon.

Dans certains pays producteurs, le Gombé est actuellement utilisé de façon courante en déroulage pour la fabrication de contreplaqué destiné à des emplois extérieurs (coffrage, construction). Il est également tranché et peut donner des placages décoratifs destinés à l'ameublement.
IATANDZA

DENOMINATIONS

BOTANIQUE
Albizia ferruginea Benth.
Famille des Mimosacées

VERNACULAIRES ET COMMERCIALES
Angola : Zanzangue
Cameroun : Evouvous
Congo : Sifou-sifou
Côte-d'Ivoire : Iatandza
Ghana : Awiemfo-samina, Okuro, Kulo, Awiafu-samina
Nigeria : Ayinre-ogo
Ouganda : Muchole
Togo : Murase
République Démocratique du Congo : Elongwanba, Okuru

DESCRIPTION DU BOIS

L’aubier est blanchâtre à brun pâle. Le bois parfait est brun clair à brun foncé à reflets dorés. Le bois est souvent contrefilé, parfois de façon irrégulière. Le grain est grossier.
A la loupe (grossissement x 15) on peut observer des pores fréquemment isolés, rares (1 à 3 par mm²), relativement gros (200 à 300 µm de diamètre), du parenchyme de deux sortes, associé aux pores en manchon losangique plus ou moins fréquemment anastomosé, ou en cellules isolées et dispersées (souvent cristallifères), des rayons 2- à 5-sériés, étroits (15 à 40 µ), de structure homogène.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

Le Iatandza est un bois léger, tendre à mi-dur, présentant des retraits linéaires faibles. Son retrait volumique est moyen. Ses résistances mécaniques sont faibles à moyennes.
Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).
Masse volumique à l'état sec* : de 500 à 640 kg/m³
Densité basale : 0,51
Dureté Monnin* : 3,4
Point de saturation des fibres : 24 %
Retrait volumique total : 9,2 %
Retrait tangentiel total : 4,9 %
Retrait radial total : 2,9 %
Sensibilité aux variations d'humidity de l'air : peu importante
Stabilité en service : bois stable
Contrainte de rupture en compression parallèle*: 50 MPa
Contrainte de rupture moyenne en flexion statique*: 89 MPa
Module d'élasticité longitudinal*: 10 500 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Iatandza présente une bonne résistance vis-à-vis des champignons de pourriture, ce qui lui permet d'être utilisé sans traitement sauf dans des conditions d'exposition extrêmement défavorables (bois au contact du sol ou au contact de sources de réhumidification fréquentes).

RÉSISTANCE NATURELLE AUX LYCTUS
Le duramen est résistant aux Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le duramen présente une bonne résistance vis-à-vis des termites de l'espèce Reticulitermes santonensis.

IMPRÉGNABILITÉ
Le duramen n’est pas imprégnable, même sous pression.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Iatandza se scie facilement et ne nécessite pas de précaution particulière. Du fait de son taux de silice négligeable (t < 0,05 %), il ne présente pas un caractère désaffûtant.

TRANCHAGE ET DÉROULAGE
Il se déroule et se tranche assez facilement. L'étuvage des grumes s'effectue à environ 85°C. Le séchage des placages ne présente pas de difficulté (peu de risques de fentes, retrait tangentiel faible). Leur collage avec des colles de type urée-formol ou phénol-formol est satisfaisant. La pression de collage conseillée pour la fabrication de contreplaqué est comprise entre 1,4 et 1,6 MPa. Le ponçage des placages peut provoquer un dégagement de poussières irritantes.

SÉCHAGE
Le séchage à l'air est plutôt lent. Pour les bois à contrefil important et irrégulier, il convient, comme pour tous les bois présentant ce type de défaut, de prendre les précautions d'usage : empilage des bois sous abri, application d'une charge sur les piles, produits anti-fentes aux extrémités des planches. Le séchage artificiel du Iatandza, comme le séchage à l'air libre, est plutôt lent mais s'effectue sans difficulté. Les risques de fentes demeurent occasionnels.
USINAGE
Le latandza se travaille facilement. Si les bois présentent un contrefil important, il conviendra de maintenir les fers bien affûtés et de choisir un angle d'attaque d'environ 15°. L’usinage peut générer des poussières parfois irritantes ; il est donc particulièrement nécessaire d'installer sur chaque machine un système d'aspiration efficace.

ASSEMBLAGE
Le latandza se cloue, s'agrafe et se visse sans difficulté particulière. Le collage est satisfaisant avec toutes les colles employées couramment dans l'industrie. Il peut être utilisé en lamellé-collé peut être envisagé pour des emplois intérieurs et extérieurs.

FINITION
Compte tenu du grain plutôt grossier de ce bois, le ponçage doit être effectué avec soin. Pour obtenir une finition parfaite, un bouche-porage est indispensable avant de vernir ou de peindre.

CONCLUSIONS ET UTILISATIONS
Le latandza est actuellement peu utilisé mais ses caractéristiques mécaniques satisfaisantes, sa bonne durabilité et ses faibles retraits en font un bois qui peut convenir pour une large gamme d'emplois. Seul son grain plutôt grossier et son contrefil fréquent peuvent limiter sa mise en œuvre dans les emplois haut de gamme. Il peut ainsi convenir à la fabrication de menuiseries extérieures (sans traitement), menuiseries intérieures, moulures, parquets, meubles, charpentes. Présentant une bonne aptitude au déroulage et au tranchage, il peut également servir à la fabrication de contreplaqué et de placages tranchés. Enfin, les bois de qualité secondaire peuvent être utilisés en coffrage et en caisserie.
ILOMBA

DÉNOMINATIONS

BOTANIQUE
Pycnanthus angolensis Warb.
Famille des Myristicacées

VERNACULAIRES ET COMMERCIALES
Cameroon, Gabon : Eteng
Congo, Democratic Republic of the Congo, Angola : Ilomba
Côte d'Ivoire : Walélé
Ghana : Otié
Guinea : Calabo
Liberia, Sierra Leone : Kpoyié
Nigeria : Akomu
Democratic Republic of the Congo : Lolako, Lifondo
Germany : Lomba
Belgium : Lolako, Lifondo
Spain : Calabo
Italy : Ilomba, Rosatello

DESCRIPTION DU BOIS

Le bois d'Ilomba est beige rosé clair plus ou moins orangé. Après exposition à l'air et à la lumière, il prend une teinte ocre à éclat lustré. Au contact du métal des outils, en particulier de la barre de pression lors du déroulage, des taches mauves peuvent apparaître (elles peuvent être facilement éliminées lors de la finition). L'aubier est rarement différencié. Le grain est moyen, les vaisseaux sont très apparents en raison de leur couleur brun orangé soutenue. Le fil est très droit. Le contrefil est très rare. Les débits sur dosse ou sur quartier présentent un aspect très uniforme. Toutefois les faces sur quartier montrent une maille assez fine très abondante.
À la loupe, on peut distinguer au milieu de certains rayons un très mince fil brun foncé qui correspond à un tube tannifère. Les placages ont aussi un aspect très uniforme.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MECANIQUES

L'Ilomba est un bois très léger à léger, très tendre à tendre. Ses retraits linéaires transverses ainsi que son retrait volumique sont moyens. Ses caractéristiques mécaniques sont faibles.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 450 à 550 kg/m³
Duréité Monnin* : 1,4
Point de saturation des fibres : 40 %
Retrait volumique total : 15 %
Retrait tangentiel total : 9,5 %
Retrait radial total : 5 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : moyenne
Contrainte de rupture en compression parallèle*: 38 MPa
Contrainte de rupture en flexion statique*: 70 MPa
Module d'élasticité longitudinal*: 8200 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
L'Ilomba présente une très faible résistance vis-à-vis des champignons de pourriture. Il doit donc subir obligatoirement un traitement de préservation quelles que soient ses utilisations. Il est déconseillé dans tous les emplois exposés à un risque d’humidification permanente ou prolongée. Cette essence est considérée comme non durable vis à vis des champignons lignivores (classe de durabilité : 5) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait n’est pas résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l'espèce Reticulitermes santonensis est très faible. Cette essence est considérée comme sensible aux termites (classe de durabilité : S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme imprégnable (classe d’imprégnabilité : 1) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
L'Ilomba se scie très facilement et le rendement est élevé. Le bois n’est pas abrasif et permet d’obtenir une bonne tenue de coupe même avec des lames en acier faiblement allié.

DÉROULAGE ET TRANCHE
En raison de l’excellente conformation générale des grumes et des qualités physiques et mécaniques du bois, l'Ilomba convient particulièrement bien à la fabrication de placages et de panneaux de contreplaqués.

Lorsque les rondins sont frais de coupe, l’étuvage n’est pas indispensable. Du fait de la résistance très faible
du bois aux attaques biologiques, il est recommandé de traiter les placages à l’aide d’un produit de préservation approprié. Le déroulage de l’Ilomba ne présente aucune difficulté particulière et se conduit comme celui de l’Okoumé.

Le fil étant très droit, les placages sont relativement fragiles et se déchirent facilement. Le séchage des placages se fait dans les mêmes conditions que pour l’Okoumé, mais il est légèrement plus lent (le temps de séchage doit être augmenté de 15 à 20%). Les placages séchent bien, sans fente ni déformation, et l’humidité finale à l’intérieur du placage est homogène. Les pressions de serrage doivent être légèrement inférieures à celles préconisées pour l’Okoumé.

L’Ilomba se tranche facilement, sans difficulté particulière ; cependant, la barre de pression peut parfois provoquer des taches mauves sur les placages qui sont facilement éliminées durant la finition. Les placages obtenus sur quartier présentent une maille très abondante et assez fine. Leur intérêt commercial reste assez marginal.

SÉCHAGE

Le séchage artificiel de l’Ilomba est difficile et doit être mené assez lentement afin de limiter les risques de déformation (voilement, gauchissement...) surtout pour les débits de grande largeur, et les risques de collapse. Un reconditionnement assez long en fin de séchage améliore sensiblement la qualité des produits obtenus. Le séchage des pièces de forte épaisseur (plus de 54 mm) est particulièrement difficile.

USINAGE

L’usinage ne présente pas de difficulté particulière car le bois est peu abrasif, tendre et de fil très droit. Des états de surface de qualité satisfaisante peuvent être obtenus sans outillage particulier.

ASSEMBLAGE

Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. Cependant, il est conseillé d’éviter les pointes de diamètre important et l’alignement de plusieurs pointes rapprochées dans le sens du fil pour limiter les risques de fente. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie, sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION

Le bois se peint et se vernit sans difficulté avec les produits de finition utilisés dans l’industrie.

CONCLUSIONS ET UTILISATIONS

L’Ilomba est un bois léger non durable qui nécessite systématiquement un traitement de préservation. Il constitue une excellente essence pour le déroulage et la fabrication de panneaux de contreplaqués. Comme l’Okoumé, il peut convenir aussi bien pour la fabrication d’intérieurs de panneaux décoratifs que pour les parements. Ses qualités technologiques en font un bois apprécié pour la fabrication de moulures, de baguettes, ou de plinthes. Il peut être aussi utilisé pour des emplois intérieurs, en menuiserie, pour la fabrication de pièces intérieures de meubles (carcasses, tablettes...), de placards, et en agencement.
IROKO

DENOMINATIONS

BOTANIQUES
Milicia excelsa C. C. Berg (= Chlorophora excelsa Benth & Hook. f.)
Milicia regia C. C. Berg (= Chlorophora regia A. Chev.)
Famille des Moracées

VERNACULAIRES ET COMMERCIALES
Cameroun, Gabon, Guinée équatoriale : Abang, Mandji
Congo, République Démocratique du Congo, République Centrafricaine : Kambala, Moloundou
Côte d'Ivoire : Iroko
Ghana : Odoum
Nigéria : Iroko, Rokko
Belgique : Moloundou

DESCRIPTION DU BOIS

A l'état frais, le bois parfait d'Iroko est jaune à brun-jaune, plus ou moins clair. Exposé à l'air et à la lumière,
il peut brunir et foncer de façon très marquée. Il prend alors un aspect vieux chêne avec des nuances
dorées. L'aubier jaune pâle est très distinct du bois parfait. Le grain est assez fin mais les vaisseaux laissent
des traces plus claires, bien apparentes surtout sur les débits sur dosse. Les cernes d'accroissement sont
fréquemment visibles sur les faces sur dosse. Le fil est très généralement droit. Le contrefil est irrégulier et
peut donner aux débits sur quartier un aspect moiré ou rubané. Certaines grumes renferment parfois des
concrétions minérales.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

L’Iroko est un bois léger à mi-lourd, mi-dur. Ses retraits linéaires transverses sont faibles. Son retrait
volumique est moyen. Ses caractéristiques mécaniques sont faibles à moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de
12 % (norme française NF B 51-002).
Masse volumique à l'état sec* : de 550 à 750 kg/m³
Dureté Monnin* : 4
Point de saturation des fibres : 23 %
Retrait volumique total : 10 %
Retrait tangentiel total : 5,8 %
Retrait radial total : 3,7 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : moyenne
Contrainte de rupture en compression parallèle*: 54 MPa
Contrainte de rupture en flexion statique*: 95 MPa
Module d'élasticité longitudinal*: 10 300 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
L'Iroko présente une bonne résistance vis-à-vis des champignons de pourriture. Il peut être utilisé sans traitement de préservation dans les emplois où un risque de réhumidification existe, mais il n'est pas conseillé dans les emplois exposés à un risque d'humidification permanente ou prolongée. Cette essence est considérée comme durable à très durable vis à vis des champignons lignivores (classe de durabilité : 1-2) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Cette essence est considérée comme durable vis à vis des termites (classe de durabilité : D) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme non imprégnable (classe d'imprégnabilité : 4) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le débit des grumes s'effectue sans difficulté avec des lames stellitées sur des équipements adaptés au sciage de bois durs. La présence de concrétions calcaires pose parfois des problèmes au sciage (endommagement des dents de scie).

TRANCHAGE ET DÉROULAGE
L'Iroko se tranche sans difficulté particulière exceptées les billes contenant des concrétions qui endommagent les couteaux. Lorsque les bois sont légèrement contrefilés, les placages obtenus moirés ou rubanés sont particulièrement appréciés en ameublement et en décoration intérieure.
A titre indicatif, l'étuvage de quartelles pendant 36 à 48 heures à l'eau chaude (80°C) donne des résultats satisfaisants. L'Iroko n’est pas déroulé dans des conditions industrielles.

SÉCHAGE
L'Iroko sèche assez rapidement et sans risque important de fente ou de déformation, excepté pour les bois présentant un contrefil plus marqué. Lors du séchage à l'air, les baguettes peuvent laisser sur les bois des
traces colorées plus ou moins profondes. En cas de séchage insuffisant et pour des emplois en milieu exposé, les tannins contenus dans le bois peuvent couler et provoquer des taches.

USINAGE
Le bois est peu abrasif mais la présence occasionnelle de dépots minéraux peut endommager les surfaces tranchantes des outils. Lorsque l’Iroko est contrefilé et qu’un état de surface parfait est recherché, il est conseillé de réduire l’angle d’attaque des outils jusqu’à 15-20°, en particulier lors du dégauchissage et du rabotage. Les opérations de moulurage, tenonnage, mortaisage et perçage s’effectuent facilement et donnent des résultats satisfaisants. Le bois prend un excellent poli d’autant plus que le bois est dur. En raison des réactions physiologiques que les poussières d’Iroko provoquent chez certaines personnes, il est conseillé d’équiper les postes d’usinage, notamment de ponçage, de systèmes d’aspiration particulièrement efficaces.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue.
Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en oeuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION
L’Iroko est souvent réfractaire aux produits de finition qui contiennent des huiles siccatives libres et qui sèchent par oxydation. Ce phénomène est lié à la présence dans le bois d’un produit anti-oxydant, la chlorophorine, qui empêche le séchage de ces produits. Il est de ce fait conseillé d’utiliser des peintures ou vernis à base de résines synthétiques (cellulosiques, vinyliques ou polyuréthanes) qui sèchent par polymérisation. Ces produits peuvent servir de couche d’impression et constituer, une fois secs, le support de base pour les autres catégories de produits de finition. Lorsqu’un parfait état de surface est recherché, un bouche-porage préalable est conseillé.

CONCLUSIONS ET UTILISATIONS
Du fait de ses caractéristiques technologiques, l’Iroko peut être utilisé pour des emplois variés à condition de respecter les précautions requises lors de l’application des produits de finition.
Il convient pour la fabrication de menuiseries extérieures, portes d’entrée, fermetures extérieures, fenêtres et portes-fenêtres, mais aussi comme bois d’environnement (passerelles, mobilier et aménagement urbain, murs anti-bruit, abris, cabines, etc) et en aménagement extérieur (portails, vérandas, pergolas) à condition d’éviter les emplois présentant un risque d’humidification permanente. Il est utilisé en menuiserie intérieure notamment pour la fabrication de parquets traditionnels ou mosaïque. Il est apprécié en construction navale en remplacement du Teck (bordés et ponts) en raison de ses qualités mécaniques et sa bonne durabilité naturelle.
L’Iroko est adapté à des emplois en structure, aussi bien pour des charpentes ou des ossatures bois (massives ou lamellées-collées) qu’en carrosserie ou plancher de véhicules. Il a été utilisé pour la fabrication de cuves à produits chimiques. Certaines billes figurées sont tranchées pour donner des placages d’ébénisterie appréciés en ameublement et décoration intérieure.
IZOMBÉ

DENOMINATIONS

BOTANIQUE
Testula gabonensis Pellegr.
Famille des Ochnacées

VERNACULAIRES ET COMMERCIALES
Cameroun : Rone
Congo : N'Gwaki
Gabon : Zombé, Mogongou, Ake, N'komi, Akewe, Ossakogha

DESCRIPTION DU BOIS

A l'état sec, le bois parfait d'Izombé est jaune ocre uni, parfois nuancé d'une teinte brun-roux un peu plus soutenue. L'aubier se distingue mal du bois parfait à l'état vert. En séchant, il se différencie et prend une teinte grisâtre claire, souvent bordée d'une veine brune violacée. Les débits sur dosse présentent quelques figurations peu marquées. Les débits sur quartier sont plus régulièrement nuancés. Le grain est fin à très fin. Le fil, souvent ondulé et contrefilé, donne fréquemment des bois moirés. La maillure est très petite et peu visible.

A la loupe (grossissement x 15) on peut observer des pores presque toujours isolés, fins (70-90 μ) et nombreux (25 à 40 par mm²), souvent obstrués par des dépôts résinoïdes rougeâtres, du parenchyme juxtavasculaire dispersé, peu abondant et difficilement perceptible, des rayons 2-3-sériés, au nombre de 8 à 10 par mm, de structure hétérogène.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

L'Izombé est un bois mi-lourd, mi-dur, présentant des retraits linéaires moyens. Ses résistances mécaniques sont moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 640 à 790 kg/m³
Densité basale : 0,60
Dureté Monnin* : 5,2
Point de saturation des fibres : 25 %
Retrait volumique total : 10,2 %
Retrait tangentiel total : 7,0 %
Retrait radial total : 4,0 %
Sensibilité aux variations d'humidité de l'air : peu importante
Stabilité en service : bois stable
Contrainte de rupture en compression parallèle*: 61 MPa
Contrainte de rupture moyenne en flexion statique*: 111 MPa
Module d’élasticité longitudinal*: 10 500 MPa

DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
L’Izombé présente une très bonne résistance vis-à-vis de Coriolus versicolor, Pycnoporus sanguineus et Antrodia sp. Sa résistance à Lentinus squarrosulus est légèrement inférieure.
L’Izombé peut donc être considéré comme un bois durable à très durable. Pour les emplois exposés aux intempéries ou pour la réalisation de menuiseries extérieures, ce bois pourra être mis en œuvre sans traitement de préservation. Il est cependant déconseillé au contact du sol ou pour les emplois présentant un risque d’humidification permanente ou prolongée.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait n’est pas attaqué par les Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l’espèce Reticulitermes santonensis est bonne.

IMPRÉGNABILITÉ
Le bois parfait de l’Izombé n’est pas imprégnable, même sous pression.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
L’Izombé se scie facilement mais nécessite un matériel puissant du fait de sa dureté et du diamètre important des grumes. Le taux de silice contenu dans le bois est négligeable (t < 0,05 %).

TRANCHE ET DÉROULAGE
L’Izombé se tranche bien et donne des placages décoratifs. Il peut être déroulé mais sa densité élevée limite l’intérêt de ce bois pour la fabrication de contreplaqué.

SÉCHAGE
En séchage à l’air, les pièces débitées sur quartier se sèchent bien et rapidement tandis que les pièces débitées sur dosse présentent des risques de gerces importants. Le séchage à l’air ou le ressuyage avant séchage artificiel doit s’effectuer sous abri modérément ventilé afin de ralentir la vitesse de séchage et, de ce fait, limiter les risques de gerces.
Le séchage de l’Izombé en séchoir traditionnel est délicat et demande beaucoup de précautions. Les meilleurs résultats ont été obtenus en maintenant une température moyenne et une humidité élevée de façon à réduire la vitesse de séchage.
En début de cycle, il est conseillé de maintenir pendant 24 heures une humidité de 100 % dans la cellule et, en fin de séchage, de stabiliser les bois (100 % d’humidité relative pendant 4 à 5 heures).

ASSEMBLAGE
L'Izombé se cloue et se visse assez facilement. Cependant des avant-trous sont conseillés pour des emplois industriels, en particulier pour les pièces de faible section. Les assemblages tiennent bien à l'arrachement. Les essais effectués avec des colles de type vinylique ont été satisfaisants. En général, l'Izombé se colle bien avec tous les types de colle couramment employés dans l'industrie, à condition que les bois soient très secs et que les presses soient chauffées aux températures les moins élevées possible.

FINITION
L'Izombé se ponce bien et donne un poli très fin. Peintures, vernis et lasures peuvent être appliqués sans difficulté.

CONCLUSIONS ET UTILISATIONS
Compte tenu de son abondance dans certaines régions et de ses caractéristiques mécaniques intéressantes, la commercialisation de cette essence devrait se développer. Sous réserve de prendre certaines précautions lors de son séchage, l'Izombé est avant tout un excellent bois d'ébénisterie massive ou plaquée, de décoration et d'agencement qui pourrait concurrencer le Merisier dans certains de ces emplois. Ses qualités d'usinage et de finition, ainsi que sa durabilité satisfaisante le rende adapté à la fabrication de :
- menuiseries extérieures (sans traitement de préservation) et menuiseries intérieures,
- parquets,
- escaliers,
- moulures,
- articles de sport (ski).
Il peut aussi convenir à la fabrication de placages tranchés.
KANDA

DENOMINATIONS

 BOTANIQUE
Beilschmiedia sp.
Famille des Lauracées

 VERNACULAIRES ET COMMERCIALES
Côte d'Ivoire : Bitéhi
Cameroun : Kanda
Gabon : Nkonengû
République Démocratique du Congo : Bonzale

DESCRIPTION DU BOIS

Le bois parfait de Kanda peut être brun rosé à brun-rouge (Kanda rose), ou brun plus ou moins foncé (Kanda brun). Les différentes espèces de Kanda sont confondues par les prospecteurs et désignées sous le même nom vernaculaire. L'aubier est bien distinct, de teinte rosée ou jaunâtre. Le grain est moyen, plutôt fin. Le fil est le plus souvent droit, sans contrefil. Les débits sur dosse ou sur quartier ont un aspect assez terne. Sur les débits sur dosse, les cernes d'accroissement sont soulignés par des traces légèrement plus brillantes. Le taux de silice est élevé.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

Le Kanda est un bois mi-lourd, tendre à mi-dur. Ses retraits linéaires transverses sont faibles à moyens. Son retrait volumique est moyen à élevé. Ses caractéristiques mécaniques sont moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 700 à 760 kg/m³
Dureté Monnin* : 3,8
Point de saturation des fibres : 29 %
Retrait volumique total : 14 %
Retrait tangentielle total : 7,7 %
Retrait radial total : 3,8 %
Sensibilité aux variations d'humidité de l'air : faible
Stabilité en service : bonne
Contrainte de rupture en compression parallèle* : 55 MPa
Contrainte de rupture en flexion statique* : 116 MPa
Module d'élasticité longitudinale* : 12 400 MPa
DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Kanda présente une bonne à très bonne résistance naturelle vis-à-vis des champignons de pourriture. Il peut être utilisé sans traitement de préservation dans tous les emplois exposés à un risque d’humidification permanente ou prolongée.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une bonne durabilité naturelle vis-à-vis des termites de l’espèce Reticulitermes santonensis.

IMPRÉGNABILITÉ
Le Kanda est faiblement imprégnable par les produits de préservation.

Remarque : cette essence présente une bonne résistance vis-à-vis des xylophages marins, notamment les tarets, compte tenu de son taux de silice élevé (compris en moyenne entre 0,2 et 0,4%).

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le sciage des grumes à l’état frais ne présente pas de difficulté particulière à condition d’utiliser des équipements adaptés au sciage des bois durs et des lames stellités compte tenu de la forte abrasivité du bois.

DÉROULAGE ET TRANCHAGE
Le Kanda peut être éventuellement déroulé à condition d’étuver les billons de façon prolongée ; un étuvage en vapeur détendue pendant 30 heures environ ou un étuvage en eau chaude (80°C) pendant environ 50 heures est conseillé pour des rondins de 0,70 m de diamètre. Le bois est très abrasif pour les couteaux de dérouleuse. La fabrication de placages tranchés à partir de Kanda est possible à condition d’étuver les bois de façon analogue au déroulage.

SÉCHAGE
Le séchage du Kanda à l’air libre ou en séchoir artificiel est rendu délicat par les risques importants de développement de gerces et de cémentation. Il est recommandé de ressuyer les bois sous abri préalablement au séchage artificiel.
USINAGE
Le Kanda désaffûte rapidement les outils du fait de son taux de silice élevé. Des outils stellités ou au carbure de tungstène sont indispensables pour obtenir une tenue de coupe suffisante dans le cadre d'une transformation industrielle. Excepté ce problème, l'usinage de ce bois ne pose pas de problème particulier. Son grain assez fin permet de lui donner un très bon fini et donne de bons résultats en tournage.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue.
En conditions industrielles, des avant-trous sont conseillés. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION
Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie. Son grain fin permet d’obtenir après ponçage d’excellent états de surface.

CONCLUSIONS ET UTILISATIONS
Compte tenu de ses bonnes caractéristiques technologiques, le Kanda est adapté à une large gamme d'utilisations pour des emplois extérieurs ou intérieurs. Techniquement, son utilisation est uniquement limitée par son séchage délicat et par sa forte abrasivité. Il convient très bien pour la fabrication de menuiseries extérieures, fenêtres, portes-fenêtres, portes d'entrée, fermetures extérieures en raison de sa stabilité et de sa bonne durabilité naturelle.
De même, sa teinte agréable le fait apprécier en menuiserie intérieure apparente, en parqueterie et en agencement intérieur. Il prend un beau poli et peut convenir pour la fabrication de meubles.
A condition de l’étuver correctement, il peut donner des placages déroulés ou tranchés de bonne qualité utilisables en structure ou à des fins décoratives.
KONDROTI

DÉNOMINATIONS

BOTANIQUES
Rhodognaphalon brevicuspe Roberty (= Bombax chevalieri Pellegr.)
Famille des Bombacées

VERNACULAIRES ET COMMERCIALES
Gabon : Alone, Ogumalanga, Koma
Congo : Alone, N'Démo

DESCRIPTION DU BOIS

Le bois parfait de Kondroti a une couleur brun rougeâtre terne plus ou moins foncée et unie. Cette couleur est sensible aux altérations. Le bois est très poreux. L'aubier est assez bien délimité, de couleur blanchâtre. Le grain est plutôt grossier, avec des pores rares mais importants, se répartissant surtout en limite de cerne. Le fil est le plus souvent assez droit, mais il est parfois irrégulier et contrarié. Le contrefil est occasionnel et peu marqué. Il donne aux débits et aux placages sur quartier un aspect régulièrement rubané. Les cernes sont plus ou moins visibles, surtout sur les placages déroulés qui présentent des figurations peu marquées. De larges lignes brun-noir de canaux traumatiques sont parfois fréquentes.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MECANIQUES

Le Kondroti est un bois très léger, très tendre à tendre. Ses retraits linéaires transverses et son retrait volumique sont moyens (retraits relativement élevés par rapport à la faible densité). Ses caractéristiques mécaniques sont faibles.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 450 à 600 kg/m³
Dureté Monnin* : 1,6
Point de saturation des fibres : 38 %
Retrait volumique total : 12,5 %
Retrait tangentiel total : 9 %
Retrait radial total : 5 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : bonne
Contrainte de rupture en compression parallèle* : 35 MPa
Contrainte de rupture en flexion statique* : 65 MPa
Module d’élasticité longitudinal* : 7 100 MPa
DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Kondroti n’est pas résistant vis-à-vis des champignons de pourriture. Les champignons de discoloration et d’échauffure peuvent attaquer le bois dès l’abattage de l’arbre. Les grumes doivent donc être évacuées le plus rapidement possible des chantiers d’abattage. Les bois doivent recevoir un traitement insecticide et fongicide à chaque étape de leur transformation puis lors de la mise en œuvre, quel que soit leur emploi. L’utilisation de cette essence est déconseillée dans tous les emplois exposés à un risque d’humidification permanente ou prolongée. Cette essence est considérée comme non durable vis à vis des champignons lignivores (classe de durabilité : 5) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait n’est pas résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une très faible durabilité naturelle vis-à-vis des termites de l’espèce Reticulitermes santonensis. Cette essence est considérée comme sensible aux termites (classe de durabilité : S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme imprégnable (classe d’imprégnabilité : 1) selon la norme NF EN 350-2.

CARACTÉRISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Kondroti n’est pas siliceux et se scie facilement ; l’outillage en acier, même faiblement allié, a une tenue de coupe suffisante, mais l’obtention d’excellents états de surface nécessite un affûtage parfait. Le bois sec produit beaucoup de poussière au sciage et a tendance à s’effriter.

DÉROULAGE ET TRANCHAGE
Les caractéristiques technologiques du Kondroti sont comparables à celles du Samba et situent cette essence entre le Fuma et l’Okoumé. Il convient très bien pour le déroulage à condition de traiter efficacement les grumes contre les attaques d’agents biologiques juste après l’abattage et pendant leur acheminement depuis les lieux d’exploitation vers les unités de transformation. Les rondins peuvent être déroulés sans étuvage préalable. Le déroulage se conduit de façon analogue à celui du Samba ou de l’Okoumé étuvé avec toutefois un taux de compression légèrement supérieur. Les placages obtenus sont de bonne qualité et de couleur plus ou moins uniforme, brun rouge assez foncé. Des placages de forte épaisseur peuvent être obtenus sans difficulté. Certains placages présentent une certaine fragilité (difficultés de bobinage), des fentes s’amorçant le long de veines foncées correspondant à des canaux traumatiques de fort diamètre. Le rendement matière en placage fini est souvent supérieur à celui obtenu avec l’Okoumé, bien que la qualité des produits soit
légèrement inférieure.
Le temps de séchage est 20 à 25% supérieur à celui de l'Okoumé.
Il est conseillé pour cette essence de diminuer très légèrement la pression de serrage par rapport aux
conditions habituelles (pression de 9 à 10 kg/cm² conseillée). Lorsque des pressions supérieures sont
requises, il est nécessaire de tenir compte de la diminution d'épaisseur des feuilles due à leur écrasement
Le Kondroti se tranche facilement, mais les placages minces sont assez fragiles. Sa couleur brun rose à brun rouge est appréciée pour la fabrication de meubles, et pourrait convenir pour les parements de portes isoplanes à usage intérieur.

SÉCHAGE
Le séchage est rapide mais les retraits de séchage sont élevés pour un bois de si faible densité. Les pièces
débitées sur dosse ont tendance à se déformer par tuilage. Il est conseillé de faire ressuyer les bois sous abri avant de les sécher artificiellement.

USINAGE
L'usinage du Kondroti ne pose pas de problème particulier, mais l'état de surface des produits obtenus est
fréquemment pelucheux et nécessite un ponçage important. Le bois se tourne et se moulure facilement à
condition d'employer des outils de coupe parfaitement affûtés.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté mais tiennent difficilement du fait de
la faible dureté du bois. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec
toutes les colles utilisées couramment dans l'industrie sous réserve que les conditions de mise en œuvre
requises (température et humidité relative dans l'atelier de collage, humidité du bois, qualité des états de
surface, grammage préconisé, etc.) soient respectées.

FINITION
Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l'industrie.
Lorsque les bois sont teintés, l'absorption de produit est importante mais les résultats sont satisfaisants.

CONCLUSIONS ET UTILISATIONS
Les caractéristiques technologiques du Kondroti ainsi que sa couleur brun-rouge assez uniforme en font une
essence recherchée pour le déroulage et, dans une moindre mesure, pour le tranchage et la fabrication de
placages décoratifs courants. Cette essence se déroule facilement, même en épaisseur relativement
importante, ce qui justifie son utilisation en âmes de contreplaqués.
Le bois est très peu durable ; à l'état vert ou après séchage, il est susceptible d'être attaqué par tous les
insectes lignivores. Les bois doivent donc être traités à chaque étape du processus de transformation. Il est
utilisé pour les portes isoplanes, aussi bien en placages qu'en âmes lattées.
En massif, il convient pour la fabrication de palettes, de caisses, d'emballages perdus. Il peut être aussi
utilisé en menuiserie intérieure, pour la fabrication de lambris, de moulures et de meubles légers.
KOSIPO

DÉNOMINATIONS

BOTANIQUE
Entandrophragma candollei Harms
Famille des Méliacées

VERNACULAIRES ET COMMERCIALES
Côte d'Ivoire, France, Belgique : Kosipo
Nigeria, Grande-Bretagne : Omu
Cameroun : Atomassié
Congo : Bobona, Mboyo-kanga, Koussié, Ndianoni
République Démocratique du Congo : Esaka, Libuyu, Lifaki mpembe
Allemagne : Kosipo-Mahagoni

DESCRIPTION DU BOIS

Le bois parfait est de couleur brun-rouge avec une teinte lie de vin, fonçant beaucoup avec le temps, et devenant encore plus sombre que le Sipo. L'aubier est bien différencié, de couleur blanc grisâtre. Sur dosse, le parenchyme dessine des rameaux foncés et mats. Les traces vasculaires sont visibles, souvent obstruées par des dépôts résinoides noircrètes. Le fil est généralement droit, avec un contrefil rubané formant des bandes assez larges et souvent visible sur les bois débités sur plein quartier. Le bois de certaines billes est moiré. La maille est fine mais distincte.
Les pores sont diffus, au nombre d'environ 5 par mm² ; leur diamètre tangentiel varie de 150 à 300 microns. Ils sont parfois obstrués par des dépôts résinoides brun rougeâtre. Les ponctuations intervasculaires sont très fines (3-4 microns). Le parenchyme est abondant, mais distinct à l'œil nu uniquement dans l'aubier. Il est disposé en lignes tangentielles parfois courtes chez les arbres jeunes ou à croissance rapide, plus continues et serrées chez les sujets à croissance lente. Les rayons sont larges de 3 à 5 cellules, au nombre de 3 à 5 par mm, de structure homogène. Certaines cellules de rayons et de parenchyme contiennent des petits corpuscules siliceux.
Le Kosipo se distingue des autres Méliacées africaines à bois rouge (Acajou, Sipo, Sapelli, Tiam) par sa couleur plus sombre, son parenchyme en lignes plus ou moins continues en cours d'accroissement, la présence de silex et l'absence de cristaux d'oxalate de calcium. Les rayons du Kosipo n'ont jamais une disposition étagée, alors que ce type de disposition est très fréquent chez le Sapelli et occasionnelle chez l'Acajou et le Sipo.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Kosipo est un bois léger à mi-lourd, tendre à mi-dur. Ses retraits linéaires transverses et son retrait volumique sont faibles à moyens. Ses caractéristiques mécaniques sont moyennes.
Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).
Masse volumique à l'état sec* : de 600 à 780 kg/m³
Dureté Monnin* : 3,2
Point de saturation des fibres : 32 %
Retrait volumique total : 13,1 %
Retrait tangentiel total : 6,6 %
Retrait radial total : 4,8 %
Sensibilité aux variations d'humidité de l'air : faible
Stabilité en service : bonne
Contrainte de rupture en compression parallèle* : 53 MPa
Contrainte de rupture en flexion statique* : 97 MPa
Module d'élasticité longitudinal* : 9 000 MPa

DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Kosipo présente une résistance naturelle moyenne vis-à-vis des champignons de pourriture. Il peut être utilisé sans traitement de préservation dans les emplois où un risque de réhumidification existe, mais son utilisation est déconseillée dans tous les emplois exposés à un risque d’humidification permanente ou prolongée. Cette essence est considérée comme durable à moyennement durable vis à vis des champignons lignivores (classe de durabilité : 2-3) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une durabilité naturelle moyenne vis-à-vis des termites de l'espèce Reticulitermes santonensis. Cette essence est considérée comme moyennement durable vis à vis des termites (classe de durabilité : M) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme peu imprégnable (classe d’imprégnabilité : 3) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le sciage du Kosipo nécessite l’emploi de lames stellités car le bois peut être très désaffûtant (taux de silice compris entre 0,1 et 0,5%).
DÉROULAGE ET TRANCHE

Le Kosipo est souvent tranché et convient en déroulage, les deux opérations s'effectuant sans difficulté. Les placages tranchés qui sont parfois bien rayonnés sont utilisés en ameublement et en décoration, mais l'évolution de la teinte du bois qui peut devenir rapidement sombre limite l'emploi du Kosipo qui est moins estimé que le Sapelli.

SÉCHAGE

Le séchage à l'air du bois massif ne présente pas de difficulté, mais le séchage artificiel est délicat car la présence de contrefil induit des risques de déformation des pièces. Il est de ce fait conseillé d'utiliser une table de séchage douce et d'appliquer une charge sur les piles de bois dans le séchoir.

USINAGE

Le rabotage et le toupillage ne présentent pas de difficulté particulière si le contrefil n'est pas trop accentué. Pour les bois très contrefilés ou à fibres enchevêtrées, il est conseillé de maintenir l'angle d'attaque des fers entre 15° et 20° pour éviter d'obtenir des surfaces rugueuses et limiter l'arrachement des fibres. Le contrefil rend difficile l'obtention d’excellents états de surface.

ASSEMBLAGE

Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION

Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie. Lorsqu’un parfait état de surface est recherché, en particulier en ameublement, l’application d’un fond dur ou un bouche-porage est conseillé.

CONCLUSIONS ET UTILISATIONS

Le Kosipo peut être utilisé en menuiserie et revêtements extérieurs, pour la fabrication de bardeaux et de structures légères sous forme massive ou lamellée-collée. Il est apprécié en menuiserie intérieure, pour la fabrication de meuble, de parquet, d’escaliers, de lambris, ainsi qu’en ébénisterie. Il est recommandé d'utiliser des sciages parfaitement séchés à un faible taux d’humidité, de préférence débités sur quartier en évitant les sections trop faibles, de façon à limiter les risques de déformation. Les placages tranchés sont utilisés en ameublement et en décoration. Le Kosipo a sensiblement les mêmes caractéristiques physiques et mécaniques que le Sapelli, mais ses propriétés ont une plus grande variabilité.
KOTIBÉ

DENOMINATIONS

BOTANIQUES
Nesogordonia papaverifera R. Cap. et Nesogordonia spp.
Famille des Sterculiacées

VERNACULAIRES ET COMMERCIALES
Côte d'Ivoire, France : Kotibé
Ghana, Royaume-Uni : Danta
Nigeria : Obutu

DESCRIPTION DU BOIS

Le bois parfait du Kotibé est de couleur brun rose à brun rougeâtre. L’aubier est bien distinct, de couleur nettement plus claire que le duramen. La couleur du bois est stable et évolue peu avec le temps si le bois est mis en œuvre dans des conditions normales d'emploi. La présence de contrefil peut donner aux débits sur quartier un aspect finement rubané apprécié. Le grain est fin et le fil est irrégulièrement contrefilé. Les débits sont parfois parcourus de fines veines blanchâtres et présentent assez fréquemment des noeuds sains de petit diamètre, parfois groupés en "patte de chat ". Les placages tranchés sur quartier peuvent présenter un aspect moiré recherché.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Kotibé est un bois mi-lourd à lourd, mi-dur à dur. Ses retraits linéaires transverses sont moyens. Son retrait volumique est moyen à élevé ainsi que ses caractéristiques mécaniques.

Nota : les valeurs ci-après précédées d’un astérique correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 750 à 800 kg/m³
Dureté Monnin* : 5
Point de saturation des fibres : 30 %
Retrait volumique total : 14 %
Retrait tangentiel total : 9 %
Retrait radial total : 5,6 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : bonne à moyenne
Contrainte de rupture en compression parallèle* : 66 MPa
Contrainte de rupture en flexion statique* : 132 MPa
Module d’élasticité longitudinal* : 10 500 MPa
DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS

Le Kotibé présente une résistance moyenne vis-à-vis des champignons de pourriture. Il peut être utilisé sans traitement de préservation dans les emplois où un risque de réhumidification occasionnelle existe, mais il n’est pas conseillé dans tous les emplois exposés à un risque d’humidification permanente ou prolongée. Cette essence est considérée comme moyennement durable vis à vis des champignons lignivores (classe de durabilité : 3) selon la norme NF EN 350-1 qui précise cependant que la durabilité naturelle de ce bois est particulièrement variable.

RÉSISTANCE NATURELLE AUX LYCTUS

Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES

Cette essence est considérée comme moyennement durable vis à vis des termites (classe de durabilité : M) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ

Cette essence est considérée comme peu imprégnable à non imprégnable (classe d’imprégnabilité : 3-4) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE

Le sciage des grumes de Kotibé nécessite des équipements adaptés aux bois durs mais ne présente pas de difficulté particulière, le bois se comportant de façon très homogène. Certaines grumes étant assez abrasives, il est conseillé d’utiliser des lames stellitées. Le rendement au sciage est souvent médiocre en raison du faible diamètre des grumes, de l’importance de l’aubier et de la conformation souvent irrégulière des rondins.

DÉROULAGE ET TRANCHAGE

Les qualités esthétiques du Kotibé le font apprécier en tranchage. Il est recommandé de procéder à un étuvage intensif afin de faciliter l’opération et améliorer la qualité des placages. Un étuvage pendant 48 h à 100°C peut être conseillé. Certaines grumes peuvent présenter des veines blanchâtres qui nuisent à la qualité esthétique des placages.

Cette essence pourrait être déroulée pour la fabrication de placages décoratifs.

SÉCHAGE

Le séchage artificiel du Kotibé (en séchoir traditionnel ou par déhumidification) est délicat et doit être mené lentement afin de limiter les risques de cémentation. Il est conseillé de procéder à un ressuyage préalable à l’air libre.
USINAGE
Malgré sa dureté élevée et son contrefil fréquent, le Kotibé s’usine sans difficulté particulière. Le bois se rabote bien, mais lorsqu’un parfait état de surface est recherché, il est conseillé de réduire l’angle d’attaque des outils jusqu’à 15 à 20° comme pour tous les bois contrefilés. Le ponçage permet d’éliminer efficacement les défauts de surface survenus durant l’usinage. Cette essence se profile, se toupille, se tourne et se sculpte facilement, sans éclat. Au mortaisage, la vitesse d’avance ne doit pas être trop rapide.

ASSEMBLAGE
Les clous, agrafés, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. En conditions industrielles, des avant-trous sont conseillés. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION
Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie. L’application d’égaliseurs de teinte se fait sans difficulté.

CONCLUSIONS ET UTILISATIONS
Les qualités technologiques et esthétiques du Kotibé le font apprécier pour une large gamme d’emplois. Son usinage est facile et il donne un beau fini. Il présente une bonne durabilité naturelle mais son séchage est délicat et doit être mené lentement.
Il constitue un excellent bois pour la fabrication de menuiseries extérieures, fenêtres, croisées, portes croisées, portes d’entrée. Il est apprécié en menuiserie intérieure, notamment en parquet traditionnel et mosaïque, pour la fabrication d’escaliers (bonne résistance à l’usure), de portes intérieures menuisées. Ses qualités esthétiques, son aspect agréable, son grain fin et son beau poli le font apprécier en ameublement où il est notamment utilisé pour la fabrication de meubles de style. Il convient également pour des emplois en tournerie, comme bois de sculpture, ainsi que pour la fabrication de manches d’outils, compte tenu de son élasticité et de sa bonne résistance au choc.
Les placages de Kotibé, en particulier ceux présentant un aspect rubané ou moiré, sont appréciés en ébénisterie et en décoration.
LATI

DENOMINATIONS

BOTANIQUES
Amphimas ferrugineus Pierre
Amphimas pterocarpoïdes Harms
Famille des Césalpiniacées

VERNACULAIRES ET COMMERCIALES
Cameroun : Edjin, Edzil
Congo : Muizi
Côte-d'Ivoire : Lati
Ghana : Yaya, Asanfran
Gabon : Edzui
Liberia : White Oak, Bliaglü, Va-tue
République Démocratique du Congo : Bokanga

DESCRIPTION DU BOIS

L'aubier est blanc jaunâtre. Le bois parfait est blanc jaunâtre à jaune-brunâtre. La présence de bandes de parenchyme régulièrement espacées et bien visibles donne aux débits un aspect caractéristique qui rappelle l'Eyong. Le fil est droit, peu souvent contrefilé. Le grain est grossier.
A la loupe (grossissement x 15) on peut observer des pores rares, de diamètre variable (150 à 350), du parenchyme (apparent à l'œil nu) en couches tangentielles épaisses légèrement sinueuses, incluant les pores, des rayons 3-4-sériés, au nombre de 6 ou 7 par mm, de structure homogène, en disposition subétagée, une structure étagée bien visible sur les sections tangentielles.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

Le Lati est un bois mi-lourd, mi-dur à dur, présentant un retrait radial moyen et un retrait tangentiel élevé. Son retrait volumique est fort. Ses résistances mécaniques sont moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec : de 700 à 880 kg/m³
Densité basale : 0,62
Durété Monnin : 4,4
Point de saturation des fibres : 32 %
Retrait volumique total : 16,5 %
Retrait tangentiel total : 10,7 %
Retrait radial total : 6,4 %
Sensibilité aux variations d'humidité de l'air : peu importante
Stabilité en service : moyenne
Contrainte de rupture en compression parallèle* : 68 MPa
Contrainte de rupture moyenne en flexion statique* : 126 MPa
Module d'élasticité longitudinal* : 13 200 MPa

DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
La résistance du Lati aux champignons de pourriture est moyenne ; un traitement de préservation est recommandé dans tous les emplois où les bois seront susceptibles d’être réhumidifiés, même temporairement. Cette essence est considérée comme moyennement durable vis à vis des champignons lignivores (classe de durabilité : 3) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
L’aubier et le duramen étant peu distincts, il est prudent de considérer que toute la masse du bois est susceptible d’être attaquée par les Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le Lati présente une résistance moyenne à médiocre vis-à-vis des termites de l’espèce Reticulitermes santonensis. Cette essence est considérée comme moyennement durable vis à vis des termites (classe de durabilité : M) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme non imprégnable (classe d’imprégnabilité : 4) selon la norme NF EN 350-2.

CARACTÉRISTIQUES DE MISE EN OEUVRE

SCIAGE
Compte tenu de la dureté élevée du bois et du diamètre parfois important des grumes, le sciage du Lati nécessite un matériel puissant. L’utilisation de lames stellitées est fortement conseillée.

TRANCHEAGE ET DÉROULAGE
Le Lati est utilisé pour la fabrication de contreplaqué. En tranchage, il peut donner des placages décoratifs intéressants.

USINAGE
L’usinage du Lati ne présente pas de difficulté. Toutefois compte tenu de la structure de ce bois, il conviendra de maintenir les outils bien affûtés pour éviter tout arrachement des fibres.
SÉCHAGE

Le séchage du Lati est susceptible de présenter des difficultés. En effet, les risques de déformations et de gerces, notamment sur dosse, sont fréquents. Un ressuyage à l'air préalablement au séchage artificiel ainsi qu'une stabilisation des bois en fin de cycle sont conseillés. Le séchage à l'air doit s'effectuer sous abri modérément ventilé afin de limiter les risques de gerces. Il est également recommandé d'appliquer une charge sur les piles de bois afin de limiter les risques de déformations.

Le séchage du Lati en séchoir traditionnel est délicat et nécessite certaines précautions. Une phase préliminaire de préchauffage est recommandée (50°C et 100 % d'humidité relative) afin d'éviter les risques de cémentation.

ASSEMBLAGE

Le Lati se cloue et se visse sans difficulté à condition de pratiquer des avant-trous.

Le collage du Lati est satisfaisant avec toutes les colles employées couramment dans l'industrie.

FINITION

Le Lati se ponce facilement. Vernis, peintures et lasures peuvent être appliqués sans difficulté.

CONCLUSIONS ET UTILISATIONS

La production de Lati est actuellement faible mais pourrait se développer compte tenu de sa relative abondance dans certaines régions et de son aire de répartition assez étendue. Le Lati peut être utilisé dans une large gamme d'emplois à condition de le sécher lentement (ressuyage à l'air, séchage artificiel avec maintien d'une humidité de l'air élevée).

Compte tenu de ses bonnes propriétés mécaniques et de son caractère esthétique, le Lati peut convenir à la fabrication de menuiseries intérieures, de lambris, de moulures, de panneaux décoratifs, de meubles courants, de parquets.

Il peut être également utilisé pour la réalisation d'aménagements intérieurs, ainsi que pour la fabrication de panneaux contreplaqués décoratifs.

Compte tenu de sa sensibilité aux attaques d'insectes, un traitement de préservation est recommandé.
LIMBA (FRAKÉ)

DÉNOMINATIONS

BOTANIQUE

Terminalia superba Engl. & Diels
Famille des Combretacées

VERNACULAIRES ET COMMERCIALES

Cameroun, Guinée équatoriale : Akom
Congo, République Démocratique du Congo : Limba
Côte d'Ivoire, Cameroun : Fraké
Ghana : Ofram
Nigeria, Royaume-Uni : Afara
République Centrafricaine : N'ganga

DESCRIPTION DU BOIS

L'aubier est difficilement discernable du duramen. Lorsqu'il est distinct, son épaisseur peut atteindre 13 à 15 cm. Le duramen a une couleur blanc crème légèrement nacrée. Après exposition à l'air et à la lumière, sa couleur évolue peu mais fonce très légèrement en tirant sur le doré, rappelant celle du Chêne clair. Les Limba peuvent comporter plus ou moins de “coeur noir”, certaines provenances en particulier ayant un bois jaunâtre parcouru par de grandes veines noirâtres. On distingue ainsi :
- le Limba clair,
- le Limba noir, de teinte gris olive à brun noir pour la zone foncée,
- le Limba bariolé présentant des veines et des plages de bois alternativement claires et foncées.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Limba est un bois très léger à léger, tendre à mi-dur. Ses retraits linéaires transverses sont faibles à moyens à forts. Son retrait volumique est moyen. Ses résistances mécaniques sont faibles à moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec : de 450 à 650 kg/m3
Dureté Monnin : 2,3
Point de saturation des fibres : 30 %
Retrait volumique total : 12 %
Retrait tangentiel total : 6,1 %
Retrait radial total : 4,3 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : moyenne
Contrainte de rupture en compression parallèle* : 47 MPa
Contrainte de rupture moyenne en flexion statique* : 88 MPa
Module d'élasticité longitudinal* : 9 500 MPa

DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Limba présente une très faible résistance vis-à-vis des champignons de pourriture. Il doit donc subir obligatoirement un traitement de préservation dans tous les emplois où un risque de réhumidification existe. Son utilisation est déconseillée dans tous les emplois exposés à un risque d'humidification permanente ou prolongée. Cette essence est considérée comme faiblement durable vis à vis des champignons lignivores (classe de durabilité : 4) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait n'est pas résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l'espèce Reticulitermes santonensis est faible. Cette essence est considérée comme sensible aux termites (classe de durabilité : S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme moyennement imprégnable (classe d'imprégnabilité : 2) selon la norme NF EN 350-2. En pratique, il est impératif de traiter le Limba à chaque étape de sa transformation : après abattage, après sciage, mais aussi lors de sa mise en œuvre contre les Lyctus pour les pièces destinées à être utilisées en intérieur et non soumises à des reprises d'humidité, et contre les insectes et les champignons pour les éléments employés en extérieur.
CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Limba se scie sans difficulté particulière. Cependant, notamment chez les bois de plantation, le développement de contraintes de croissance dans les arbres sur pied peut être à l’origine de difficultés de sciage et provoquer l’apparition de fentes et de déformations sur les bois.
Il convient alors de procéder à un sciage par retournement ou à un sciage symétrique afin de libérer progressivement les contraintes de croissance. Le rendement au sciage est souvent faible du fait de nombreux éclats.

DÉROULAGE ET TRANCHAGE
Le Limba convient bien à la fabrication de placages et de panneaux de contreplaqué, mais les rendements sont relativement faibles en raison de la forte épaisseur de l’aubier, et parfois de la présence éventuelle de “coeur noir”. De plus, les placages obtenus à partir du Limba bariolé ne sont guère appréciés à cause de leur aspect.
* Pour le déroulage, l’étuvage n’est pas indispensable si les bois sont frais de coupe. Dans le cas contraire, un étuvage à la vapeur à 70 °C environ pendant 24 heures est généralement conseillé. L’opération de déroulage ne pose aucune difficulté particulière, mais les placages obtenus sont cassants si les grumes ont été insuffisamment étuvées.
* En tranchage, les billes de Limba noir donnent des placages plus ou moins veinés ou unis dont la couleur rappellerait un peu celle du Noyer (d’où l’appellation “Noyer du Mayombe”). Néanmoins, ces placages ne présentent qu’un intérêt assez marginal à moins de leur appliquer une finition qui les mette en valeur.
L’opération de tranchage s’effectue sans difficulté et les placages obtenus sèchent facilement et rapidement.

SÉCHAGE
Le Limba sèche rapidement et sans difficulté. Les risques de fentes ou de déformations sont très faibles. Lors du séchage à l’air libre, il est conseillé de faire des piles très aérées pour augmenter la circulation d’air et par conséquent diminuer le temps de séchage.

USINAGE
En raison de sa faible dureté, de son fil généralement droit et de sa faible fissilité, le Limba est un bois dont l’usinage ne présente pas de difficultés particulières, aussi bien lors du dégauchissage que durant les opérations de transformation ultérieures. Cependant, il est parfois difficile d’obtenir d’excellents états de surface car le bois a tendance à pelucher légèrement. En outre, il est assez abrasif.

ASSEMBLAGE
Les clous, vis, chevilles métalliques et agrafes s’enfoncent facilement et ont une bonne tenue. Le collage du bois avec les colles habituellement utilisées dans l’industrie ne présente pas de difficultés particulières.

FINITION
L’application de produits de finition teintés (lasures, vernis, peintures) ne présente aucune difficulté. Lorsque le bois est de couleur uniforme, une mise en teinte donne des résultats intéressants alors que pour les Limba bariolés, des finitions incolores sont conseillées.
CONCLUSIONS ET UTILISATIONS

Le Limba est un bois assez tendre et relativement léger, se séchant vite et facilement, se travaillant aisément et présentant une bonne stabilité une fois sec, mais d'une durabilité naturelle très médiocre. Par conséquent, les produits finis doivent toujours recevoir un traitement de préservation contre les Lyctus et contre les champignons. Ces traitements doivent être aussi appliqués préalablement après chaque étape du cycle de transformation. A cette condition, le Limba peut convenir pour une large gamme d'emplois. C'est un excellent bois de menuiserie intérieure (portes et aménagements intérieurs, moulures, plinthes ...) fréquemment peint pour masquer ses irrégularités de couleur. Il est utilisé enameublement (carcasses et intérieurs de meubles, tiroirs, pieds de table, chaises). Il convient très bien pour la fabrication de meubles peints et laqués, notamment les meubles pour enfants. Le Limba est utilisé en déroulage pour la fabrication de panneaux contreplaqués. Les placages peuvent également être utilisés pour la fabrication d'éléments en contreplaqué moulé (sièges, aménagement intérieur ...).

A condition de lui appliquer un traitement de préservation adapté, le Limba peut aussi convenir pour la fabrication de menuiseries extérieures (volets, persiennes, portes d'entrée, croisées...), de charpentes, et d'éléments lamellés-collés.
LIMBALI

DENOMINATIONS

BOTANIQUES
Gilbertiodendron dewevrei J. Léonard
Gilbertiodendron preussii J. Léonard
Sous le nom de Limbali peuvent être aussi commercialisées les espèces suivantes :
Gilbertiodendron taiense Aubrév.
Gilbertiodendron brachystegioïdes J. Léonard
Gilbertiodendron klainei J. Léonard
Famille des Césalpiniacées

VERNACULAIRES ET COMMERCIALES
Cameroun : Ekobem
Congo : Epal, Bemba
Côte d’Ivoire : Vâa
Gabon : Abeum à grandes feuilles, Bembé
Liberia : Sehmeh
Nigeria : Ekpagoi eze
République Centrafricaine : Molapa
Sierra leone : Mbombi
République Démocratique du Congo : Limbali, Ditshipi, Ligudu

DESCRIPTION DU BOIS
L’aubier est blanc jaunâtre à brun rose clair. Le bois parfait est brun-rouge avec des nuances verdâtres ou cuivrées. Le fil est généralement droit ou légèrement contrefilé. Le grain est grossier.
A la loupe (grossissement x 15) on peut observer des pores rares (2 à 5 par mm²) et gros (200-250 µ), du parenchyme associé aux pores en manchon losangique et sporadiquement en lignes fines terminales, des rayon fins, nombreux (8 à 12 par mm), unisériés ou partiellement bisériés, de structure légèrement hétérogène.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES
Le Limbali est un bois mi-lourd à lourd, mi-dur à dur, présentant des retraits linéaires moyens.
Son retrait volumique est fort. Ses résistances mécaniques sont moyennes à fortes.

Nota : les valeurs ci-après précédées d’un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 730 à 880 kg/m³
Densité basale : 0,66
Dureté Monnin* : 5,5
Point de saturation des fibres : 26 %
Retrait volumique total : 13,9 %
Retrait tangentiel total : 9,0 %
Retrait radial total : 4,7 %
Sensibilité aux variations d'humidité de l'air : peu importante
Stabilité en service : moyenne
Contrainte de rupture en compression parallèle* : 72 MPa
Contrainte de rupture moyenne en flexion statique* : 152 MPa
Module d'élasticité longitudinal* : 14 500 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Limbali présente généralement une bonne résistance aux champignons de pourriture fibreuse (Coriolus versicolor, Pycnoporus sanguineus, Lentinus squarrosulus) ; sa résistance aux agents de pourriture cubique (Antrodia sp.) est moyenne. Dans la pratique, il peut résister convenablement et sans traitement dans des emplois à risques modérés (menuiseries extérieures). En raison de la mauvaise imprégnabilité du bois, sa conservation dans le temps, dans le cas d'emplois exposés (bois au contact du sol ou au contact de sources d'humidité fréquentes), serait mauvaise même si un traitement de préservation lui était appliqué.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le Limbali est moyennement résistant aux termites de l'espèce Reticulitermes santonensis.

IMPRÉGNABILITÉ
L'imprégnabilité du bois de Limbali est mauvaise.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Compte tenu du diamètre assez important des grumes et de la dureté du bois, le sciage du Limbali nécessite un matériel puissant. Bien que son taux de silice contenu soit faible (t < 0,05 %), ce bois présente un caractère légèrement désaffûtant. Certaines grumes peuvent éclater du fait de la libération de contraintes de croissance développées dans les arbres sur pied. Un sciage par retournement est conseillé ainsi que l'utilisation de lames stellitées. L’application d’un produit anti-fentes est recommandé.
SÉCHAGE
Le Limbali sèche lentement à l'air libre, souvent avec apparition de déformations, de gerces et de fentes. Pour limiter le développement de ces défauts, il est conseillé de placer les bois sous abri. Le séchage artificiel du Limbali est plutôt lent et doit être conduit prudemment, notamment afin d'éviter les risques de fentes et de gerces.

ASSEMBLAGE
Le Limbali se cloue et se visse correctement. Des avant-trous sont cependant nécessaires pour limiter les risques d'éclatement du bois. Le Limbali se colle facilement avec tous les types de colle employés couramment dans l'industrie, notamment les vinyliques. Cependant, son emploi en lamellé-collé exposé aux intempéries est à éviter (bois à fort retrait).

FINITION
Le Limbali se ponce facilement et prend un beau poli. Peintures, vernis, lasures peuvent être appliqués sans difficulté mais abondamment du fait de la forte capacité d'absorption du bois. Pour les emplois de haut de gamme, l'application de ces produits de finition est conseillée afin de limiter les reprises d'humidité toujours susceptibles de provoquer des déformations.

CONCLUSIONS ET UTILISATIONS
Compte tenu de son abondance dans certaines régions, le Limbali pourrait offrir des possibilités d'approvisionnement régulier et donner lieu à des courants d'exportation importants. Son séchage est lent mais ne présente pas de difficulté particulière. Ses bonnes résistances mécaniques et sa durabilité naturelle satisfaisante assurent au Limbali une large gamme d'emplois. Il peut convenir à la fabrication de différents produits : menuiseries extérieures (sans traitement), lambris, menuiseries intérieures, construction de maisons en bois, charpentes lourdes, parquets, planchers de véhicule, platelages, meubles de jardin, construction navale (ponts de bateau).
LONGHI

DENOMINATIONS

BOTANIQUES
Famille des Sapotacées

VERNACULAIRES ET COMMERCIALES
Côte d'Ivoire : Aninguéri, Akatio
Cameroun : Abam
Congo : Longhi
Gabon : M’Bébame
République Démocratique du Congo : Bopambu
France : Longui, Longui rouge, Aniégré rose
Italie : Aniégré rosso

DESCRIPTION DU BOIS

Le bois parfait de Longhi a une couleur beige à brun rosé parfois parcouru de veines peu distinctes plus sombres. Cette couleur évolue dans le temps par exposition à l’air et à la lumière pour devenir finalement brun jaune. L’aubier est peu distinct, de couleur légèrement plus claire que le duramen. Le grain est fin. Le fil est très généralement droit. Certains rondins présentent parfois un bois frisé. Le contrefil occasionnel est peu accusé ; exceptionnellement, il peut provoquer un très fin rubanage. Les débits sur quartier présentent une maille très fine et très abondante. Les bois débités présentent parfois des petits noeuds (picots). Durant l’usinage, l’odeur du bois est assez désagréable mais les poussières dégagées ne provoquent pas de réaction physiologique.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Longhi est un bois mi-lourd, mi-dur à dur. Ses retraits linéaires transverses sont moyens. Son retrait volumique est moyen à élevé. Ses caractéristiques mécaniques sont moyennes à élevées.

Nota : les valeurs ci-après précédées d’un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 700 à 800 kg/m³
Dureté Monnin* : 5
Point de saturation des fibres : 30 %
Retrait volumique total : 14,5 %
Retrait tangentiel total : 8,1 %
Retrait radial total : 5,1 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : moyenne
Contrainte de rupture en compression parallèle*: 66 MPa
Contrainte de rupture en flexion statique*: 133 MPa
Module d'élasticité longitudinal*: 14 700 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Longhi présente peu de résistance vis-à-vis des champignons de pourriture. Il doit donc subir obligatoirement un traitement de préservation dans tous les emplois où un risque de réhumidification peut survenir. Il est déconseillé dans tous les emplois exposés à un risque d’humidification permanente ou prolongée.
Cette essence est considérée comme faiblement durable vis à vis des champignons lignivores (classe de durabilité : 4) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une durabilité naturelle moyenne vis-à-vis des termites de l'espèce Reticulitermes santonensis. Cette essence est considérée comme moyennement durable vis à vis des termites (classe de durabilité : M) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme moyennement imprégnable (classe d’imprégnabilité : 2) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Longhi se scie sans difficulté particulière mais son léger caractère désaffûtant rend nécessaire un stellitage des lames. Compte tenu de la bonne conformation des grumes, le rendement au sciage est excellent.

DÉROULAGE ET TRANCHE
SÉCHAGE
Il est conseillé de sécher artificiellement les bois juste après le sciage afin de limiter les risques de
discoloration fongique ; le séchage doit être conduit lentement afin d’éviter l’apparition de gerces, défaut
auquel cette essence est très sensible.
Un compromis doit être trouvé entre la nécessité de sécher rapidement les bois après sciage pour éviter les
risques d’attaque de champignons de pourriture, et l’obligation d’utiliser une table de séchage “douce” pour
prévenir le développement de gerces et de fentes de retrait.

USINAGE
Le Longhi est un bois qui s’usine bien, sans difficulté. Son fil généralement droit ou peu contrefilé et son
grain fin permettent d’obtenir des états de surface de bonne qualité. Pour obtenir une bonne tenue de coupe,
il est conseillé d’utiliser un outillage à mise rapportée de carbure de tungstène. Cette essence se profile, se
toupille, se tourne et se sculpte facilement. Il se ponce sans aucune difficulté et donne un très beau poli.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. Le collage ne
présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment
dans l’industrie sous réserve que les conditions de mise en oeuvre requises (température et humidité relative
dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient
respectées.

FINITION
Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie.
Lorsqu’un parfait état de surface est recherché, en particulier en ameublement, l’application d’un fond dur
ou un bouche-porage est conseillé. Il se teinte très bien, aussi bien en couleur claire que foncée.

CONCLUSIONS ET UTILISATIONS
Le Longhi est avant tout un bois d’ébénisterie massive (chaises, fauteuils, pieds de table) ou plaquée pour
les meubles d’intérieur. Étant assez dur et résistant bien à l’usure, il convient pour la fabrication de parquet.
Il est utilisé en menuiserie intérieure (escaliers et rampes, portes menuisées), en construction légère
(ossature, lamellé-collé), ainsi qu’en agencement, aménagement et décoration intérieure. Il est aussi adapté
tà la fabrication d’objet divers, articles de ménage, jouets, objets tournés, sculptés.
MAKORÉ

DÉNOMINATIONS

BOTANIQUES
Tieghemella africana A. Chev., *T. heckelii* Pierre
Famille des Sapotacées

VERNACULAIRES ET COMMERCIALES
Cameroun, Côte d’Ivoire, France, Allemagne : Douka, Makoré
Gabon, Congo : Douka
Guinée équatoriale, Gabon : Okola

DESCRIPTION DU BOIS

Le bois de Makoré est brun rouge assez foncé. Il présente parfois quelques nuances mauves, et/ou des veines claires peu distinctes ; il est également souvent moiré. L’aubier est bien distinct du bois parfait, de couleur claire. Les cernes d’accroissement sont parfois visibles, surtout sur les débits sur dosse. Le fil est généralement droit. Le grain est fin.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Makoré est un bois mi-lourd et mi-dur. Ses retraits linéaires transverses et son retrait volumique sont moyens. Ses caractéristiques mécaniques sont faibles à moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

- Masse volumique à l'état sec* : de 600 à 750 kg/m3
- Dureté Monnin* : 4
- Point de saturation des fibres : 28 %
- Retrait volumique total : 13 %
- Retrait tangentiel total : 7,3 %
- Retrait radial total : 5,6 %
- Sensibilité aux variations d'humidité de l'air : moyenne
- Stabilité en service : moyenne
- Contrainte de rupture en compression parallèle* : 59 MPa
- Contrainte de rupture en flexion statique* : 108 MPa
- Module d'élasticité longitudinal* : 11 200 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Makoré présente une très bonne résistance vis-à-vis des champignons de pourriture. Il est préconisé et conseillé dans tous les emplois exposés à un risque d'humidification temporaire ou permanente. Cette essence est considérée comme très durable vis à vis des champignons lignivores (classe de durabilité : 1) selon la norme NF EN 350-1. Elle couvre naturellement (sans traitement de préservation) la classe 4 de risque biologique.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une très bonne durabilité naturelle vis-à-vis des termites de l'espèce Reticulitermes santonensis. Cette essence est considérée comme durable vis à vis des termites (classe de durabilité : D) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme non imprégnable (classe d'imprégnabilité : 4) selon la norme NF EN 350-2.

RÉSISTANCE NATURELLE VIS-À-VIS DES FOREURS MARINS
Le Makoré présente une bonne résistance naturelle aux tarets ce qui permet son utilisation pour la fabrication de coques de navires.

CARACTERISTIQUES DE MISE EN ŒUVRE

SCIAGE
Le sciage du Makoré nécessite l’utilisation d’équipements adaptés aux bois durs. Le bois présente un taux de silice élevé (en moyenne entre 0,4 et 0,5%) ; il est donc très abrasif et exige l’emploi de lames stellitées. Le bois encrasse parfois les lames, mais un simple nettoyage au jet d’eau est suffisant. Le rendement en plot est toujours assez élevé. Le déliage des plateaux donne également des rendements de l'ordre de 75 à 80%. L’installation sur les machines d’un système d’aspiration efficace est indispensable car le dégagement de poussières de bois provoque chez certaines personnes une forte irritation des muqueuses du nez, des yeux et de la gorge.

DÉROULAGE ET TRANCHAGE
Le Makoré convient bien à la fabrication de placages tranchés destinés à l’ameublement ainsi qu'au déroulage pour la fabrication de contreplaqués spéciaux (contreplaqué " marine " en particulier du fait de sa très bonne durabilité naturelle). Les billons et les quartelles nécessitent un étuvage prolongé avant d'être déroulés ou tranchés. Pour les quartelles, un étuvage pendant 48 heures en bouillotte à 100°C peut être conseillé. Pour les billons de déroulage, un étuvage à la vapeur pendant 48 à 72 heures donne des résultats satisfaisants. Le déroulage se conduit de façon identique à celui des bois durs comme le Moabi. Le séchage des placages est assez lent, mais les risques de défauts sont limités. La composition et la finition des panneaux ne posent aucun problème particulier. Au tranchage, les bois qui sont fréquemment moirés ou pommelés donnent des placages dont la qualité esthétique est appréciée.
SÉCHAGE
Le Makoré se sèche sans difficulté particulière, relativement rapidement et sans déformation ni fente importante. Il est toutefois préférable de le ressuyer préalablement à l'air avant de compléter son séchage en séchoir artificiel.

USINAGE
Le Makoré est un bois homogène, de droit fil, dont l’usinage donne des résultats satisfaisants, aussi bien en bois de fil (rabotage, moulurage) qu’en bois de bout (tenonnage). Son taux de silice élevé le rend très abrasif d’où la nécessité d’un outillage stellité ou à mise rapportée de carbure de tungstène pour avoir une tenue de coupe suffisante dans le cadre d’une fabrication industrielle. Comme pour le sciage, l’installation sur les machines (en particulier sur les 4-faces, tenonneuses, calibreuses, ponceuses) d’un système d’aspiration efficace est indispensable car le dégagement de poussières de bois provoque chez certaines personnes une forte irritation des muqueuses du nez, des yeux et de la gorge. Le ponçage est facile et donne un excellent fini.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. En conditions industrielles, des avant-trous sont conseillés car le bois a tendance à fendre. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient parfaitement respectées compte tenu de la densité élevée du bois.

FINITION
Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie.

CONCLUSIONS ET UTILISATIONS
Le Makoré présente une très bonne durabilité naturelle (couverture de la classe de risque biologique 4 sans traitement de préservation) et de bonnes caractéristiques mécaniques. Il convient pour la fabrication de menuiseries extérieures, portes d’entrée, fermetures extérieures, fenêtres et portes-fenêtres, mais aussi comme bois d’environnement (passerelles, mobilier et aménagement urbain, murs anti-bruit, abris, cabines, etc.) et en aménagement extérieur (portails, vérandas, pergolas). Il est adapté pour tous les emplois présentant un risque d’humidification permanente, notamment en construction navale pour la fabrication de quille, membrures cintrées, bordés, ponts, sachant de plus qu’il présente une bonne résistance naturelle aux tarets. Dans ce secteur d’activité, il est employé également sous forme de contreplaqués durables et résistant à l’humidité. Son grain fin et sa couleur brun rouge unie le font apprécier pour de nombreuses utilisations intérieures : charpente apparente, menuiserie, agencement, décoration, parquet, escalier, ameublement massif ou plaqué. Il convient aussi en tournerie et en sculpture, pour la fabrication de manches de couteaux. Son usinage nécessite un outillage stellité ou à mise rapportée de carbure de tungstène pour avoir une tenue de coupe suffisante. L’installation sur les machines d’un système d’aspiration efficace est indispensable car les poussières dégagées lors de l’usinage sont irritantes.
MANSONIA (BETE)

DÉNOMINATIONS

BOTANIQUE
Mansonia altissima A. Chev.
Famille des Sterculiacées

VERNACULAIRES ET COMMERCIALES
Cameroun, République Centrafricaine : Koul
Congo : Guissepa
Côte d'Ivoire : Bété, Boroua
Ghana : Aprono
Nigeria : Ofun
Allemagne, Grande Bretagne : Mansonia
France : Bété

DESCRIPTION DU BOIS

Le bois de coeur et l’aubier sont très différenciés. L’aubier est blanchâtre, le bois parfait brun jaunâtre ou brun gris plus ou moins foncé, parfois légèrement pourpre. Des veines grises ou noircâtres sont assez fréquentes. La teinte, bien accusée sur le bois frais, s’estompe avec le temps. Par sa couleur, ce bois est souvent comparé aux noyers des régions tempérées. Le grain est fin, homogène. Le bois présente une maillure très fine. Le fil est généralement droit. Un contrefil occasionnel confère aux débits sur quartier un aspect légèrement rubané.

Le parenchyme, indistinct à l'œil nu, apparaît à fort grossissement dispersé sous forme de nombreuses et courtes chaînettes très étroites. Les cellules de parenchyme contiennent parfois des cristaux. Les pores fins (diamètre moyen 0,1 mm), sont plus ou moins perceptibles à l'œil nu. Ils sont nombreux, isolés, mais le plus souvent accolés radialement par 2 à 4. Les ponctuations intervasculaires sont très fines (3-4 microns). Les rayons sont disposés en lignes étagées (3 étages par mm), visibles à l'œil nu sur dosse. Ils sont petits, uniformes, larges de 2 à 3 cellules, homocellulaires sauf une rangée de cellules terminales dressées.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Mansonia est un bois léger à mi-lourd, tendre à mi-dur. Ses retraits linéaires transverses sont moyens. Ses caractéristiques mécaniques et son retrait volumique sont faibles à moyens.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

- **Masse volumique à l'état sec** : de 600 à 700 kg/m³
- **Dureté Monnin** : 3,8
- **Point de saturation des fibres** : 27 %
- **Retrait volumique total** : 11,6 %
Retrait tangentiel total : 7,3 %
Retrait radial total : 4,5 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : moyenne à faible
Contrainte de rupture en compression parallèle* : 59 MPa
Contrainte de rupture en flexion statique* : 122 MPa
Module d'élasticité longitudinal* : 11 000 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Mansonia présente une bonne résistance vis-à-vis des champignons de pourriture. Il peut être utilisé sans traitement de préservation dans tous les emplois où un risque de réhumidification existe. Cependant, son utilisation en extérieur sous climat tropical nécessite des précautions de mise en œuvre, des cas de dégradations de menuiseries extérieures ayant été observés.
Cette essence est considérée comme très durable vis à vis des champignons lignivores (classe de durabilité : 1) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une très bonne durabilité naturelle vis-à-vis des termites de l'espèce Reticulitermes santonensis. Cette essence est considérée comme durable vis à vis des termites (classe de durabilité : D) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme non imprégnable (classe d’imprégnabilité : 4) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le sciage du Mansonia ne pose pas de problème particulier. Cependant, bien que le taux de silice soit négligeable, le bois est légèrement abrasif et l’utilisation de lames stellitées est conseillée. Les sciures et les poussières de bois ont fréquemment une action nocive sur les muqueuses respiratoires et sur la peau. De ce fait, il est recommandé d’équiper les machines de systèmes d’aspiration efficaces et de rendre obligatoire le port de masques.
DÉROULAGE ET TRANCHAGE
Le Mansonia se tranche couramment et se déroule facilement, mais les placages sont fragiles quand ils sont secs. Les placages tranchés sont utilisés pour la fabrication de meubles, de caisses de piano, de panneaux décoratifs.

SÉCHAGE
Le Mansonia sèche relativement vite et bien, tant à l'air qu'en séchage artificiel. Cependant, les fentes préexistantes ont tendance à s'agrandir d'où la nécessité d'utiliser une table de séchage douce. Les risques de déformations sont très limités.

USINAGE
Le Mansonia s'usine facilement mais présente un léger caractère abrasif d'où la nécessité d'utiliser un outillage stellité ou à mise rapportée de carbure de tungstène pour avoir une meilleure tenue de coupe dans le cadre d'une fabrication industrielle. L'installation sur les machines d'un système d'aspiration efficace est indispensable car le dégagement de poussières de bois peut avoir chez certaines personnes une action irritante sur les muqueuses respiratoires et sur la peau. Le bois se ponce bien et prend un beau poli.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l'industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l'atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION
Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l'industrie. Cependant, les vernis à alcool ont tendance à décolorer le bois qui prend alors une teinte jaunâtre claire.

CONCLUSIONS ET UTILISATIONS
Ses bonnes caractéristiques technologiques, sa bonne durabilité naturelle, son aptitude à être usiné facilement permettent d'utiliser le Mansonia dans de nombreux emplois. L'installation sur les machines de systèmes d'aspiration efficaces est indispensable car le dégagement de poussières de bois lors des opérations de sciage et d'usinage peut avoir chez certaines personnes une action irritante sur les muqueuses respiratoires et sur la peau. Le Mansonia peut être utilisé en menuiserie extérieure, en construction navale, pour la fabrication de bardeaux. Cependant, sous climat tropical, son utilisation en extérieur nécessite des précautions de mise en œuvre afin d'éviter tous risques de dégradation des ouvrages. En utilisations intérieures, il convient pour la fabrication de parquet, de lambris, de moulure, en ameublement, en aménagement intérieur. Son grain fin et son veinage le font apprécier, en placage ou sous forme massive, en menuiserie fine, en ébénisterie, et en décoration. Il est aussi utilisé pour la fabrication de cosses de fusil, d'objets tournés, et en placages tranchés pour la fabrication de meubles, de caisses de piano, de panneaux décoratifs.
MOABI

DÉNOMINATIONS

BOTANIQUE
Baillonella toxisperma Pierre
Famille des Sapotacées

VERNACULAIRES ET COMMERCIALES
Cameroun, Guinée équatoriale : Adjap, Ayap
Gabon : Adza, Niabi, Oréré, Oabé
Congo, République Démocratique du Congo, Angola : Moabi, Mwabi
Allemagne, France, Italie, Pays-Bas, Royaume-Uni : Moabi

DESCRIPTION DU BOIS

Le bois parfait de Moabi est brun rosé à vieux rose plus ou moins foncé. Il a un aspect satiné apparent, notamment sur les débits sur quartier. Les cernes d'accroissement sont fréquemment visibles, et donnent aux débits un aspect finement veiné. Le grain est fin à très fin. Les pores sont peu apparents et les traces vasculaires très fines et très courtes. Le fil du bois est généralement droit, parfois ondé, ondulé ou frisé. Le contrefil est quasiment inexistant. Les débits sur dosse et sur quartier ont un aspect très homogène, de couleur unie.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Moabi est un bois lourd, mi-dur à dur. Ses retraits linéaires transverses sont moyens. Son retrait volumique est moyen à élevé. Ses caractéristiques mécaniques sont élevées.

Nota : les valeurs ci-après précédées d’un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l’état sec* : de 800 à 900 kg/m³
Dureté Monnin* : 7
Point de saturation des fibres : 23 %
Retrait volumique total : 13,5 %
Retrait tangentiel total : 8,6 %
Retrait radial total : 6,5 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : faible à moyenne
Contrainte de rupture en compression parallèle* : 74 MPa
Contrainte de rupture en flexion statique* : 158 MPa
Module d’élasticité longitudinal* : 17 000 MPa
DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS

Le Moabi présente une très bonne résistance vis-à-vis des champignons de pourriture. Il est préconisé et conseillé dans tous les emplois exposés à un risque d’humidification permanente ou prolongée. Cette essence est considérée comme très durable vis à vis des champignons lignivores (classe de durabilité : 1) selon la norme NF EN 350-1. Elle couvre naturellement (sans traitement de préservation) la classe 4 de risque biologique.

RÉSISTANCE NATURELLE AUX LYCTUS

Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES

Le bois présente une très bonne durabilité naturelle vis-à-vis des termites de l’espèce Reticulitermes santonensis. Cette essence est considérée comme durable vis à vis des termites (classe de durabilité : D) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ

Cette essence est considérée comme peu imprégnable à non imprégnable (classe d’imprégnabilité : 3-4) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN ŒUVRE

SCIAGE

Le sciage du Moabi nécessite l’utilisation d’équipements adaptés aux bois durs. Le bois présente un taux de silice élevé (en moyenne entre 0,2 et 0,3%) ; il est donc très abrasif et exige l’emploi de lames stellitées. Le rendement obtenu au sciage et au délignage est élevé et comparable à celui obtenu avec le Makoré. L’installation sur les machines d’un système d’aspiration efficace est indispensable car le dégagement de poussières de bois provoque chez certaines personnes une forte irritation des muqueuses du nez, des yeux et de la gorge.

DÉROULAGE ET TRANCHAGE

Le Moabi convient très bien à la fabrication de placages tranchés, ainsi qu’en déroulage pour la fabrication de panneaux de contreplaqués spéciaux ou de panneaux décoratifs (les grumes pommelées ou frisées sont recherchées pour cet usage). En raison de sa densité élevée, le Moabi nécessite un étuvage prolongé avant tranchage ou déroulage. L’étuvage des quartelles de tranchage en vapeur détenue (100 °C environ) pendant 48 à 60 heures donne des résultats satisfaisants (étuvage légèrement plus long que pour le Makoré). De même, l’étuvage des rondins en vapeur à 70°C pendant quatre jours environ permet d’obtenir des placages déroulés de très bonne qualité. L’opération de déroulage se conduit de la même manière que celui du Makoré. Les placages obtenus, de couleur unie brun rouge foncé, présentent un excellent état de surface. Le séchage des placages est relativement rapide. Le ponçage des panneaux donne une excellente finition mais les bandes d’abrasif ont une durée de vie très courte en raison de la teneur en silice élevée.
SÉCHAGE
Le Moabi sèche bien, sans risque de déformation. Cependant, pour éviter l'apparition de fentes de retrait ou l'aggravation de fentes déjà existantes, il est recommandé de ne pas sécher les bois trop rapidement. Pour le séchage à l'air, les débits doivent être empilés sous abri avec des baguettes minces par rapport à l'épaisseur des débits (ventilation limitée).
Le Moabi ayant des retraits linéaires assez élevés, il est recommandé de le sécher lentement jusqu'à obtenir un faible taux d'humidité du bois (10-12% environ) pour une utilisation en menuiserie ou en ébénisterie.

USINAGE
L'ensemble des opérations d'usinage donne des résultats satisfaisants ; lors du tenonnage et du mortaisage, il est cependant recommandé d'utiliser des pare-éclats. Le taux de silice élevé rend ce bois abrasif d'où la nécessité d'un outillage stellité ou à mise rapportée de carbure de tungstène pour avoir une tenue de coupe suffisante dans le cadre d'une fabrication industrielle. L'installation sur les machines (en particulier sur les 4-faces, tenonneuses, calibreuses, et ponceuses) d'un système d'aspiration efficace est indispensable du fait du dégagement de poussières irritantes. Le ponçage est facile et donne un excellent fini.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. En conditions industrielles, des avant-trous sont conseillés car le bois est dur et a tendance à fendre. Le collage présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l'industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l'atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient parfaitement respectées.

FINITION
Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l'industrie.

CONCLUSIONS ET UTILISATIONS
Le Moabi présente d’excellentes propriétés technologiques comparables à celles du Makoré. Il convient pour la fabrication de menuiseries extérieures, portes d'entrée, fermetures extérieures, fenêtres et portes-fenêtres, mais aussi comme bois d'environnement (passerelles, mobilier et aménagement urbain, murs anti-bruit, abris, cabines, etc) et en aménagement extérieur (portails, vérandas, pergolas). Il est adapté à tous les emplois présentant un risque d'humidification permanente, notamment en construction navale pour la fabrication de quille, membranes cintrées, bordés, ponts. Dans ce secteur d’activité, il est employé également sous forme de contreplaqués durables et résistants à l'humidité, comme panneaux décoratifs pour les aménagements intérieurs de bateaux de plaisance. Son grain fin et sa couleur brun rouge unie le font apprécier pour de nombreuses utilisations intérieures : menuiserie, agencement, décoration, parquet, escalier, ameublement massif ou plaqué. Il convient aussi en tournerie et en sculpture, pour la fabrication d’articles de sport, de manches de couteaux, d’instruments de musique, de jouets. L’installation sur les machines d'un système d'aspiration efficace est indispensable car les poussières dégagées lors de l’usinage sont irritantes.
MOVINGUI

DENOMINATIONS

BOTANIQUE
Distemonanthus benthamianus Benth.
Famille des Césalpiniacées

VERNACULAIRES ET COMMERCIALES
Cameroun, Gabon : Eyen
Côte d'Ivoire : Movingui
Ghana : Bonsamdua
Nigéria, Royaume-Uni : Ayan
Europe sauf Royaume-Uni : Movingui

DESCRIPTION DU BOIS

Le Movingui est un bois jaune citron plus ou moins foncé, présentant occasionnellement quelques variations de teinte en jaune brun à verdâtre. L'aubier a une teinte plus claire, parfois grisâtre. Les débits dans le bois parfait ont une couleur unie. Le grain est moyen. Le fil est assez irrégulier. Les vaisseaux contiennent parfois des dépôts blanchâtres. Le contrefil est occasionnel et peut donner une aspect moiré aux débits ou aux placages sur quartiers qui sont fréquemment ondulés ou rubanés. Des fractures transversales peu apparentes (coupes de vent) sont parfois observées. Certains Movingui contiennent des extraits jaunes hydrosolubles susceptibles d'être à l'origine de taches sur les éléments en contact avec le bois, notamment lorsqu'il est exposé à des sources d'humidité permanentes.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

Le Movingui est un bois mi-lourd, mi-dur à dur. Ses retraits linéaires transverses sont faibles à moyens. Son retrait volumique est moyen à élevé. Ses caractéristiques mécaniques sont moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 650 à 850 kg/m³
Dureté Monnin* : 5,5
Point de saturation des fibres : 23 %
Retrait volumique total : 11 %
Retrait tangentiel total : 5,8 %
Retrait radial total : 3,6 %
Sensibilité aux variations d'humidité de l'air : faible à moyenne
Stabilité en service : moyenne à bonne
Contrainte de rupture en compression parallèle* : 64 Mpa
Contrainte de rupture en flexion statique*: 129 MPa
Module d'élasticité longitudinal*: 11 900 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS

Le Movingui présente une résistance moyenne vis-à-vis des champignons de pourriture. Il peut être utilisé sans traitement de préservation dans tous les emplois où un risque de réhumidification existe, mais il n’est pas conseillé dans tous les emplois exposés à un risque d’humidification permanente ou prolongée. Il doit si nécessaire recevoir un traitement de préservation contre les termites. Cette essence est considérée comme moyennement durable vis à vis des champignons lignivores (classe de durabilité : 3) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS

Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES

Le bois présente une durabilité naturelle moyenne vis-à-vis des termites de l’espèce Reticulitermes santonensis. Cette essence est considérée comme moyennement durable vis à vis des termites (classe de durabilité : M) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ

Cette essence est considérée comme non imprégnable (classe d’imprégnabilité : 4) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE

Le taux de silice dans le bois est variable, mais souvent élevé (0,15% à 1%). De ce fait, il est recommandé d’utiliser des lames stellitées ou à mise rapportée de carbure de tungstène. A l’état très frais, l’abrasivité du bois est nettement moindre qu’à l’état sec.

DÉROULAGE ET TRANCHAGE

Le Movingui peut être déroulé après étuvage prolongé. Cependant, il n’est pas employé du fait de sa couleur jaunie unie et de son aspect non figuré, peu appréciés en décoration. En tranchage, les bois ondés, moirés ou rubanés sont recherchés pour l’ébénisterie et la décoration intérieure (ameublement, panneaux décoratifs, portes). Un étuvage assez soutenu de 48 heures à l’eau bouillante est nécessaire pour donner aux placages une bonne souplesse et favoriser ultérieurement leur séchage. L’opération de tranchage ne présente aucune difficulté.
SÉCHAGE
Le Movingui se sèche facilement, sans risques de déformations importantes, mais il est sensible aux gerces et fentes en bout. En séchoir traditionnel ou par déshumidification, il se sèche sans difficulté.

USINAGE
Le rabotage, le moulurage et le toupillage du bois donnent de bons états de surface à condition que la vitesse d'amenage soit réduite et que les angles d'attaque soient faibles du fait du contrefil irrégulier. Le Movingui se rabote, se perce, se mortaise sans difficulté particulière, mais pour obtenir une tenue de coupe suffisante, il est recommandé d'utiliser des outils à mise rapportée de carbure de tungstène car le bois est abrasif (taux de silice élevé). L'installation d'un système d'aspiration efficace est indispensable car le dégagement de poussières de bois provoque chez certaines personnes des dermatoses et des affections respiratoires.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue.
En conditions industrielles, des avant-trous sont conseillés. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en oeuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION
Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie. Lorsqu’un parfait état de surface est recherché, en particulier en ameublement, l’application d’un fond dur ou un bouche-porage est conseillé.

CONCLUSIONS ET UTILISATIONS
Ses caractéristiques physiques, mécaniques et esthétiques rendent le Movingui adapté à une large gamme d’emplois. Du fait de sa résilience, il est employé en contreplaqué et dans les emplois soumis au choc. Ses qualités mécaniques le font apprécier dans les utilisations en structure massive ou lamellée-collée, aussi bien qu’en ameublement, en décoration intérieure ou en parquet mosaique (éventuellement associé à d’autres essences) ou traditionnel (vernissage ou vitrification recommandés car ce bois de couleur claire à grain moyen à tendance à s'encrasser rapidement lorsqu'il est simplement ciré).
Il trouve de larges débouchés en menuiserie extérieure (portes d'entrée, croisées, fermetures extérieures, portes de garage) ou intérieure (aménagements, agencement, décoration). Sa bonne résistance au choc le rend adapté à la fabrication de fonds de wagon et de camion, et d’articles de sports. Sa bonne tenue aux acides dilués (notamment l’acide sulfurique), permet de l'utiliser dans certains emplois spéciaux tels que la fabrication de cuves à produits chimiques. Certains Movinguis contiennent des extraits jaunes hydrosolubles susceptibles d’être à l'origine de taches sur les éléments en contact avec le bois, lorsqu'il est exposé sans protection à des sources d'humidité permanentes.
NAGA

DENOMINATIONS

BOTANIQUES
Brachystegia cynometroïdes Harms, B. eurycoma Harms, B. leonensis Burt., Davy & Hutch.
Famille des Césalpiniacées

VERNACULAIRES ET COMMERCIALES
Cameroun : Ekop naga
Nigéria, Royaume-Uni : Okwen
France : Naga

DESCRIPTION DU BOIS

Le bois parfait de Naga est brun cuivré, plus ou moins foncé, à reflets nacrés. Les cernes d'accroissement sont bien visibles sur les débits sur dosse. Ils sont soulignés par des figurations claires de parenchyme. Les débits sur quartier sont parfois finement rubanés. Le bois présente la particularité d'avoir une structure très nettement étagée, aussi bien sur dosse que sur quartier. Les bois les moins colorés à cœur ne présentent pas de limite précise entre aubier et bois parfait, et le changement de couleur est très progressif. Le grain est moyen à grossier : les traces vasculaires sont très apparentes sur le bois car elles sont soulignées par des manchons de parenchyme clair. Le fil du bois est irrégulier, avec fréquemment des déviations locales. Le contrefil n’est pas très marqué. Certains bois présentent des canaux traumatiques renfermant une gomme brune.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Naga est un bois léger à mi-lourd, tendre à mi-dur. Ses retraits linéaires transverses sont faibles à moyens. Son retrait volumique est moyen. Ses caractéristiques mécaniques sont moyennes.

Nota : les valeurs ci-après précédées d’un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec*: de 530 à 730 kg/m³
Duréton Monnin*: 3,1
Point de saturation des fibres : 30 %
Retrait volumique total : 12,4 %
Retrait tangentiel total : 6,8 %
Retrait radial total : 4,7 %
Sensibilité aux variations d'humidité de l'air : faible à moyenne
Stabilité en service : bonne
Contrainte de rupture en compression parallèle*: 55 MPa
Contrainte de rupture en flexion statique*: 103 MPa
Module d'élasticité longitudinal*: 10 400 MPa
DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS

Le Naga présente une faible résistance vis-à-vis des champignons de pourriture. Dans tous les emplois où un risque de réhumidification existe, il doit donc subir obligatoirement un traitement de préservation prolongé car il est difficilement imprégnable. Son utilisation est déconseillée dans tous les emplois exposés à un risque d’humidification permanente ou prolongée.

RÉSISTANCE NATURELLE AUX LYCTUS

Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES

Le bois présente une durabilité naturelle moyenne vis-à-vis des termites de l’espèce *Reticulitermes santonensis*.

IMPRÉGNABILITÉ

Le Naga est faiblement imprégnable par les produits de préservation.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE

Bien que son taux de silice soit négligeable (<0,05%), le Naga a un effet désaffûtant élevé et de ce fait nécessite l’emploi de lames stellilitées. De même, il est recommandé de scier les grumes le plus tôt possible après abattage, les bois verts ou gorgés d’eau étant beaucoup moins abrasifs et ayant moins tendance à carboniser lors du passage de la lame (défaut fréquemment observé avec cette essence).

DÉROULAGE ET TRANCHAGE

Le Naga est très peu utilisé en déroulage ou en tranchage en raison de son fil souvent contrarié, du contrefil fréquent, de son grain relativement grossier, et des difficultés techniques que pose l’utilisation des placages (soulèvement du fil, état de surface rugueux et pelucheux après séchage, présence de poche d’eau rendant le collage délicat).

SÉCHAGE

Le séchage du Naga doit être conduit lentement afin de limiter l’apparition de défauts. Ce bois est relativement sensible au collapse ainsi qu’aux gerces et aux fentes en bout d’où la nécessité de le sécher jusqu’à un faible taux d’humidité (10-12%).

USINAGE

Malgré son contrefil, le Naga s’usine relativement facilement, mais de bons états de surface sont difficiles à obtenir. Même avec des angles d’attaque très réduits, les fibres ont tendance à se soulever et à rendre le bois pelucheux. Au moulurage, le bois a localement tendance à carboniser.
ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue.
En conditions industrielles, des avant-trous sont conseillés. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION
Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie. Lorsqu’un parfait état de surface est recherché, en particulier en ameublement, l’application d’un fond dur ou un bouche-porage est conseillé.

CONCLUSIONS ET UTILISATIONS
Le Naga convient pour les emplois qui ne nécessitent pas une finition soignée car il est difficile d’obtenir de bons états de surface, les bois usinés restant souvent pelucheux. Ainsi, il peut être utilisé pour la fabrication d’éléments d’aménagement et d’agencement courants, de placards, d’étagères, de portes, de menuiseries courantes. Il convient pour la fabrication de parquet et plancher industriel, de charpente légère et d’ossatures massives ou lamellées-collées.
NIANGON

DENOMINATIONS

BOTANIQUES

Tarrietia utilis Sprague (= *Heritiera utilis* Kosterm.)
T. densiflora Aubrev. & Normand (= *H. densiflora* Kosterm.)
Famille des Sterculiacées

VERNACULAIRES ET COMMERCIALES

Cameroun : Ogoué
Côte d’Ivoire : Niangon
Gabon : Ogoué, Akevau
Ghana : Nyankom
Libéria : Yawi, Whismore, De-orh
Sierra Leone : Yawe

Remarque : en général, l’appellation Niangon est associée à l’espèce *Tarrietia utilis* et l’appellation Ogoué à l’espèce *Tarrietia densiflora*. Cette distinction est due au fait que l’Ogoué est moins apprécié par certains utilisateurs.

DESCRIPTION DU BOIS

Le Niangon est un des bois rouges africains le plus facile à reconnaître et à identifier à l’œil nu. En effet, il présente sur quartier une maille souvent importante et un toucher “gras”. Il est de couleur brun rosé à brun rougeâtre violacé, et prend un aspect mordoré en vieillissant. Les cernes d’accroissement ne sont pas visibles et la structure du bois est homogène. Le grain est moyen. Le fil est parfois enchevêtré, avec éventuellement du contrefil, mais d’une façon générale peu marqué sans incidence sur le comportement technologique du bois. Cette irrégularité du fil donne au bois un aspect décoratif. Sur la section transversale, on distingue des pores disséminés, de taille et de répartition peu uniformes, toujours rares et plutôt de gros diamètre ; les plus gros sont visibles à l’œil nu et sont isolés ou accolés par 2 ou 3. Les rayons sont distincts, le plus souvent au nombre de 4 par mm. Le parenchyme est assez abondant, apparaissant seulement à fort grossissement, dispersé en courtes chaînettes tangentielles inégalement réparties, et parfois en ligne mince en limite d’accroissement.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

Le Niangon est un bois léger à mi-lourd, tendre à mi-dur. Ses retraits linéaires transverses sont faibles à moyens. Ses caractéristiques mécaniques et son retrait volumique sont moyens.

Nota : les valeurs ci-après précédées d’un astérisque correspondent à un taux d’humidité du bois de 12 % (norme française NF B 51-002).
Masse volumique à l'état sec*: de 580 à 720 kg/m³
Dureté Monnin*: 3
Point de saturation des fibres: 30 %
Retrait volumique total: 12,5 %
Retrait tangential total: 8 %
Retrait radial total: 3,7 %
Sensibilité aux variations d'humidité de l'air: moyenne
Stabilité en service: moyenne
Contrainte de rupture en compression parallèle*: 56 MPa
Contrainte de rupture en flexion statique*: 110 MPa
Module d'élasticité longitudinal*: 10 600 MPa

DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Niangon présente une résistance naturelle moyenne vis-à-vis des champignons de pourriture. Il peut être utilisé sans traitement de préservation dans les emplois où un risque de réhumidification existe. Son utilisation est déconseillée dans tous les emplois exposés à un risque d'humidification permanente ou prolongée. Cette essence est considérée comme moyennement durable vis à vis des champignons lignivores (classe de durabilité : 3) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une durabilité naturelle moyenne vis-à-vis des termites de l'espèce *Reticulitermes santonensis*. Cette essence est considérée comme moyennement durable vis à vis des termites (classe de durabilité : M) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme non imprégnable (classe d'imprégnabilité : 4) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN ŒUVRE

SCIAGE
Le sciage ne présente pas de difficulté particulière bien que les dents de scie aient davantage tendance à s'échauffer que lors du sciage d'essences présentant une résistance analogue à la coupe. Le bois est assez désaffutant bien que le taux de silice soit négligeable ; l'utilisation de lames stellitées est conseillée dans des conditions de transformation industrielle.
DÉROULAGE ET TRANCHAGE

Les billes de Niangon présentant une forme suffisamment cylindrique peuvent être éventuellement utilisées en déroulage. Le Niangon est couramment tranché. Un étuvage à 85°C est alors conseillé. Les placages tranchés présentent un aspect décoratif.

SÉCHAGE

Le Niangon sèche à l’air rapidement et sans difficulté. Les risques de déformations sont en général faibles sauf pour les pièces contrefilées. Une période de séchage à l’air de 2 à 3 mois est recommandée avant de procéder au séchage artificiel.

USINAGE

Le dégauchissage, le rabotage et le toupillage du Niangon s’effectuent correctement bien que le bois ait tendance à échauffer les outils et à encrasser les faces de dépouille des lames. De même, les bois particulièrement gras ont tendance à encrasser les bandes de ponçuses.

ASSEMBLAGE

Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION

Bien que certains bois aient un aspect “gras” au toucher, le Niangon se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie. Lorsqu’un parfait état de surface est recherché, l’application d’un fond dur ou un bouche-porage est conseillé.

CONCLUSIONS ET UTILISATIONS

De par ses caractéristiques physiques et mécaniques, sa facilité de sciage, de séchage et de mise en œuvre, le Niangon peut être utilisé pour une large gamme d’emplois intérieurs ou extérieurs abrités. Il est avant tout utilisé en menuiserie extérieure mais aussi pour la fabrication de structures légères, d’escaliers intérieurs, de moulures, de parquet, de lambris, ainsi qu’en ameublement. Les placages tranchés sont utilisés en décoration et en agencement intérieur. Le Niangon est apprécié en construction navale (bordés, cabines) et convient bien pour toutes les réalisations extérieures en bordure de mer du fait de sa faible réaction vis-à-vis du fer (très faible risque d’apparition de taches au niveau des assemblages).
NIOVÉ

DÉNOMINATIONS

BOTANIQUES
Staudtia kamerunensis Warb. (= S. stipitata Warb.)
Famille des Myristicacées

VERNACULAIRES ET COMMERCIALES
Cameroun : M'Bonda
Guinée : Bakapi
Gabon : Niové, M'Boun
Congo, Angola : Menga-Menga
République Démocratique du Congo : Susumenga
Allemagne, France, Italie, Pays-Bas, Royaume-Uni : Niové

DESCRIPTION DU BOIS

Le bois parfait de Niové a une couleur assez variable : il comporte fréquemment une zone de bois en cours de duraminisation, plus colorée que l'aubier, mais assez claire (jaune orangé), qui entoure le bois de cœur ocre clair à brun rouge plus ou moins foncé. Cette dernière zone est parfois parcourue de veines brun noire. Lorsqu'il est assez foncé, le bois rappelle beaucoup l'Acajou de Cuba avec un grain plus fin. Ces variations de couleur constituent un handicap pour le développement de certains emplois où une homogénéité d'aspect est requise. L'aubier se distingue bien du reste du bois ; il est jaune rosâtre pâle. Le grain est très fin. Le bois est parfaitement homogène et les cernes d'accroissement ne sont pas visibles. Le fil est généralement très droit. Les débits sont légèrement lustrés et ont occasionnellement un aspect gras. Après rabotage, une remontée de poudre blanchâtre à la surface du bois est parfois observée. Cette poudre s'élimine facilement et n'a aucune incidence sur la finition.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Niové est un bois lourd à très lourd, mi-dur à très dur. Ses retraits linéaires transverses et son retrait volumique sont faibles à moyens. Ses caractéristiques mécaniques sont élevées.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec : de 850 à 1000 kg/m3
Dureté Monnin : 7,8
Point de saturation des fibres : 24 %
Retrait volumique total : 13,6 %
Retrait tangential total : 6 %
Retrait radial total : 4,9 %
Sensibilité aux variations d'humidité de l'air : moyenne à élevée
Stabilité en service : faible à moyenne
Contrainte de rupture en compression parallèle*: 88 MPa
Contrainte de rupture en flexion statique*: 170 MPa
Module d'élasticité longitudinal*: 15 000 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Niové présente une très bonne résistance vis-à-vis des champignons de pourriture. Cependant, la zone de bois intermédiaire, plus claire que le bois parfait, est caractérisée par une durabilité naturelle voisine de celle de l’aubier, et risque d’être attaquée par les champignons (même particularité que pour l’Azobé). Il est possible d’utiliser cette essence (hors bois de transition) dans tous les emplois exposés à un risque d’humidification temporaire ou permanente. Cette essence couvre naturellement (sans traitement de préservation) la classe 4 de risque biologique.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois parfait (hors bois intermédiaire) présente une très bonne durabilité naturelle vis-à-vis des termites de l’espèce Reticulitermes santonensis.

IMPRÉGNABILITÉ
Le bois parfait de Niové est difficilement imprégnable par les produits de préservation. En climat tempéré, le Niové peut être employé sans traitement de préservation dans tous les emplois si la zone de bois intermédiaire est éliminée. Dans le cas contraire, un traitement de préservation doit être appliqué pour éviter les attaques d’insectes et de champignons. Sous les climats tropicaux, il est conseillé de traiter le bois dans son intégralité pour toutes les utilisations au contact permanent et direct du sol ou de sources d’humidité.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le sciage du Niové est lent mais ne présente pas de difficulté. Il nécessite l’utilisation d’équipements adaptés aux bois très durs avec des lames stellitiées à faible pas de denture.

DÉROULAGE ET TRANCHAGE
Le Niové ne se déroule pas mais convient très bien à la fabrication de placages tranchés d’ébénisterie et de décoration. En raison de sa densité élevée, l’étuvage du Niové est indispensable et doit s’effectuer en eau chaude (90°C - 48 heures). Sur quartier, il donne des placages abondamment mailléls. L’opération de tranchage nécessite un parfait réglage des outils.
SÉCHAGE
Le séchage du Niové à l'air libre et en séchoir artificiel doit être conduit prudemment en raison de risques de formation de poches d'eau à l'intérieur des pièces. Un ressuyage des bois sous abri préalablement au séchage artificiel est recommandé. Il est par la suite conseillé de procéder à un réchauffage du bois pendant environ une journée en début de cycle de séchage. Afin de limiter l'apparition de gerces, les bois devront être séchés jusqu'à une humidité voisine de l'humidité de stabilisation après mise en œuvre.

USINAGE
Le Niové est un bois très dur mais n'est pas siliceux. Il se dégauchit, se rabote, se profile sans problème particulier à condition d'utiliser des équipements adaptés à des bois très durs. Lors du mortaisage et du tenonnage, des pare-éclats sont indispensables. Cette essence se tourne très bien et son grain très fin lui permet de donner un excellent fini.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue, mais des avant-trous sont indispensables car le bois est très fissile.
Comme pour tous les bois très durs, le collage est délicat mais donne de bons résultats à condition que les modalités de mise en œuvre requises (température et humidité relative dans l'atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient parfaitement respectées.

FINITION
Le bois se peint et se vernit avec les principaux produits de finition utilisés dans l'industrie. Sa couleur hétérogène rend nécessaire pour certaines utilisations une mise en teinte éventuellement précédée d'une décoloration locale.

CONCLUSIONS ET UTILISATIONS
Le Niové est essentiellement utilisé dans ses zones de production et actuellement peu exporté. Il est apprécié pour son grain très fin qui permet d'obtenir d'excellentes finitions, pour ses bonnes qualités mécaniques, sa très bonne durabilité naturelle. Ses utilisations sont limitées par sa couleur hétérogène et variable, la présence d'une zone de bois intermédiaire très peu durable, et sa fissilité élevée qui rend sa mise en œuvre délicate et nécessite un séchage lent. Il constitue un excellent bois d'ébénisterie ; en ameublement, du fait de sa stabilité insuffisante, il est employé essentiellement en placage. Il convient pour la fabrication de panneaux décoratifs intérieurs ainsi qu’en tournerie, en brossete, en bimbeloterie et pour la fabrication de sièges. Il permet de fabriquer des parquets de haut de gamme et des revêtements de sols spéciaux (très bonne résistance à l’usure et aux acides). Son emploi pourrait se développer en construction navale de plaisance, en massif pour les pièces mécaniques ou en placages pour la décoration intérieure.
OBÉCHÉ (SAMBA, AYOUS)

DÉNOMINATIONS

BOTANIQUE

Triplochiton scleroxylon K. Schum
Famille des Sterculiacées

VERNACULAIRES ET COMMERCIALES

Côte d'Ivoire : Samba
Ghana : Wawa
Nigeria : Obéke, Obéchi, Arere
Cameroun, Gabon, Congo : Ayous, Ayos
République Centrafricaine : Bado
Allemagne, Pays-Bas : Abachi
Angleterre, Belgique : Abeche
France : Samba, Ayous

DESCRIPTION DU BOIS

Le bois est de couleur blanc crème fonçant légèrement à la lumière. L'aubier n'est pas différencié par la couleur, mais il est plus sensible aux altérations que le duramen et prend alors une coloration anormale. Le bois débité peut prendre une coloration grise (liée à certaines zones de production) ou bariolée de veines brunes à grisâtres (odeur nauséabonde associée). Le grain est plutôt grossier. Les débits sur dosse présentent des traces vasculaires réparties irrégulièrement, larges et inégalement espacées, et qui tranchent par leur couleur. Sur quartier, la maille est assez fine et brillante. Le contrefil occasionnel peut donner un aspect rubané aux bois.

Tous les éléments du bois, à l'exception des rayons, ont une disposition étagée. Le parenchyme abondant est en courtes chaînettes unisériées et en manchon étroit autour des pores. Les cellules sont en majorité fusiformes, quelques-unes recoinées une à trois fois, et contiennent parfois des cristaux. Les pores sont bien visibles, rares, isolés ou rarement accolés par 2 ou 3 radialement. Leur taille est variable de 150 à 250 µ environ. Ils renferment souvent des thydes brillants. Le diamètre des ponctuations entre vaisseaux varie de 7 à 8 µ. Les rayons sont 4 à 8-sériés. Quelques-uns, très petits, sont 1 ou 2-sériés. Leur structure est hétérogène, avec une alternance de rangées de cellules couchées et de cellules palissadiques. Ils contiennent de nombreux cristaux.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

L’Obéché est un bois très léger, très tendre à tendre. Ses retraits linéaires transverses sont faibles. Son retrait volumique est faible à moyen. Ses caractéristiques mécaniques sont faibles.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).
Masse volumique à l'état sec*: de 320 à 440 kg/m³
Dureté Monnin*: 1,2
Point de saturation des fibres : 29 %
Retrait volumique total : 9,8 %
Retrait tangential total : 5 %
Retrait radial total : 2,9 %
Sensibilité aux variations d'humidité de l'air : faible à moyenne
Stabilité en service : moyenne à bonne
Contrainte de rupture en compression parallèle*: 30 MPa
Contrainte de rupture en flexion statique*: 57 MPa
Module d'élasticité longitudinal*: 5900 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS

L'Obéché n’est pas résistant vis-à-vis des champignons de pourriture. Les champignons de discoloration et d'échauffure peuvent attaquer le bois dès l'abattage de l'arbre. Les grumes doivent donc être évacuées le plus rapidement possible des chantiers d’abattage. Les bois doivent être traités à chaque étape de leur transformation puis lors de la mise en oeuvre, quel que soit leur emploi. Leur utilisation est déconseillée en cas de risques d’humidification permanente ou prolongée. Cette essence est considérée comme non durable vis à vis des champignons lignivores (classe de durabilité : 5) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS

Le bois parfait n’est pas résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES

La durabilité du bois vis-à-vis des termites de l'espèce Reticulitermes santonensis est très faible. Cette essence est considérée comme sensible aux termites (classe de durabilité : S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ

Cette essence est considérée comme peu imprégnable (classe d’imprégnabilité : 3) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE

Du fait de sa faible densité et de son faible caractère abrasif (taux de silice < 0,05%), l’Obéché se scie sans difficulté particulière avec des lames en acier ordinaire. Il est conseillé d’utiliser un angle d'attaque élevé (30°).
DÉROULAGE ET TRANCHE
L’Obéché se déroule facilement en placages minces ou épais pour la fabrication de contreplaqué. Il est aussi utilisé en tranchage. Compte tenu de la très faible dureté du bois, il n’est pas nécessaire d’étuver les billes. Les placages obtenus ont peu tendance à fendre. Il est conseillé de traiter les placages verts contre les lyctus.

SÉCHAGE
L’Obéché sèche sans difficulté. Pour le séchage à l’air, il est recommandé d’utiliser des baguettes de forte section pour assurer une très bonne ventilation des bois et accélérer ainsi le séchage sachant que les risques de déformation et de fente sont quasi inexistent.
Le séchage artificiel peut être conduit à assez haute température sans risque de fente, gerce ou déformation, en assurant ainsi une très bonne qualité de séchage.

USINAGE
Quand le bois est de droit fil, il se rabote très facilement et les états de surface obtenus sont de bonne qualité. Quand le contrefil est marqué, les fibres ont tendance à s’arracher. Durant les opérations d’usinage en bout et lors du mortaisage, le bois a tendance à s’effriter et à produire des éclats ; il est de ce fait recommandé de veiller particulièrement à la qualité de l’affûtage et à réduire l’angle de coupe. Après ponçage, le bois prend un aspect lustré très apprécié.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté mais leur tenue est limitée du fait de la très faible dureté du bois. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité de l’air dans l’atelier de collage, humidité du bois, qualité des états de surface, etc.) soient respectées.

FINITION
Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie. Lorsqu’un parfait état de surface est recherché, en particulier en ameublement, l’application d’un fond dur ou un bouche-porage est conseillé.

CONCLUSIONS ET UTILISATIONS
Sous forme massive, l’Obéché est principalement utilisé en menuiserie intérieure, notamment pour la fabrication de moulure et de baguettes d’encadrement, mais aussi de lambris ainsi qu’en agencement intérieur. Il convient en ameublement et pour la fabrication d’emballage (cageots, caisses armées, boîtes à fromages, etc.). Il est aussi employé pour la fabrication d’objets particuliers tels que les talons de chaussures, les socques, les modèles de fonderie, les jouets en bois, ainsi que dans les zones de production pour la fabrication de pirogues monoxyles, de mortiers, de tam-tam, de masques et d’objets sculptés. L’Obéché est utilisé en tranchage mais surtout en déroulage pour la fabrication de contreplaqué, de panneaux lattés et de portes planes.
Il pourrait être utilisé pour la fabrication de lattes de sauna.
Pour l’essentiel de ses emplois, l’Obéché doit être traité systématiquement contre les attaques d’agents biologiques, si possible à chaque étape du processus de transformation jusqu’à la fabrication du produit fini.
OKOUMÉ

DÉNOMINATIONS

BOTANIQUE
Aucoumea klaineana Pierre
Famille des Burseracées

VERNACULAIRES ET COMMERCIALES
Gabon : Okoumé, Angouma, Moukoumi, N’Koumi
Congo : N’Kumi
Guinée équatoriale : Okumé
France : Okoumé
Grande-Bretagne, Pays-Bas : Okoumé, Gaboon

DESCRIPTION DU BOIS

Le bois parfait d’Okoumé a une couleur rose saumon uniforme, plus ou moins foncée, parfois assez pâle, parfois au contraire d’un rose franc et vif avec un aspect lustré et nacré qui le différencie bien de l’aubier blanc grisâtre. Après une longue exposition à la lumière, la teinte rose s’estompe et le bois devient beige clair ou beige jaunâtre. Le grain est moyennement fin. Le fil est parfois droit, mais le plus souvent avec un contrefil assez régulier mais peu marqué qui ne donne pas aux bois un aspect rubané. Certains bois ont un fil plus ou moins ondulé dont l’effet se superpose à celui du contrefil et confère aux débits un aspect ondé, cordé ou moiré.
Les cernes d’accroissement sont représentés par des alternances de zones claires et foncées, bien visibles lorsque le bois est poncé. Les pores sont circulaires ou très légèrement ovales, de taille plutôt régulière, souvent isolés, certains accolés radialement par 2, plus rarement par 3 ou 4, variant en abondance selon les couches. Ils sont souvent obstrués par des thylles à parois minces et brillantes. Le parenchyme est indistinct. Les rayons sont fins, uniquement visibles à la loupe, uniformes en largeur, régulièrement espacés, de teinte plus claire que le tissu fibreux.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

L’Okoumé est un bois très léger à léger, très tendre à tendre. Ses retraits linéaires transverses et son retrait volumique sont faibles à moyens. Ses caractéristiques mécaniques sont faibles.

Nota : les valeurs ci-après précédées d’un astérisque correspondent à un taux d’humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l’état sec* : de 350 à 500 kg/m³
Dureté Monnin* : 1,6
Point de saturation des fibres : 40 %
Retrait volumique total : 12 %
Retrait tangentiel total : 6,9 %
Retrait radial total : 4,6 %
Sensibilité aux variations d'humidité de l'air : moyenne à élevée
Stabilité en service : faible à moyenne
Contrainte de rupture en compression parallèle* : 36 MPa
Contrainte de rupture en flexion statique* : 70 MPa
Module d'élasticité longitudinal* : 7 800 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
L’Okoumé présente une faible résistance vis-à-vis des champignons de pourriture. Son utilisation est déconseillée dans tous les emplois exposés à un risque d’humidification permanente ou prolongée. Cette essence est considérée comme faiblement durable vis à vis des champignons lignivores (classe de durabilité : 4) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait n’est pas résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l’espèce Reticulitermes santonensis est très faible. Cette essence est considérée comme sensible aux termites (classe de durabilité : S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme peu imprégnable (classe d’imprégnabilité : 3) selon la norme NF EN 350-2.

Note : après abattage, les billes d’Okoumé sont peu sensibles au bleuissement mais peuvent être attaquées par les insectes de piqûres noires ; il est donc conseillé de les traiter avant leur transport vers les unités de transformation.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
L’Okoumé a un effet désaffûtant prononcé (taux de silice élevé, compris entre 0,1 et 0,3%). En scierie, indifféremment sur les scies à ruban ou sur les scies circulaires, le stellitage est indispensable et donne des résultats très satisfaisants.
DÉROULAGE ET TRANCHAGE
L’Okoumé est avant tout une essence de déroulage dont le faible contrefil n’a pas d’incidence sur le processus de transformation. Si les bois sont frais, ils peuvent être déroulés sans traitement thermique avec un angle de dépouille variant entre -0,5° (grume 20 cm) et +1,5° (grume 100 cm), et un taux de compression variant généralement de 10% (placages de 9/10 à 15/10 mm) à 20% (placages de 20/10 mm). Un traitement thermique à la vapeur est cependant recommandé pour améliorer nettement la qualité des placages produits (proportion de choix I doublée). Un tel traitement permet en effet de ramollir la texture du bois, d’homogénéiser l’humidité des bois, de faciliter le séchage des placages et développer leur résistance, d’améliorer la qualité des états des surface. Le déroulage avec traitement nécessite un angle de dépouille variant entre -1° (grume 20 cm) et +1,25° (grume 100 cm), et un taux de compression légèrement supérieur à celui préconisé pour le déroulage à froid.

SÉCHAGE
Le séchage artificiel de l'Okoumé pose peu de problèmes, sauf pour les bois qui présentent un contrefil important et qui auront tendance à se déformer. Ce type de défaut est notamment fréquent sur les pièces de faible dimension. Le chargement des piles de bois durant le séchage est recommandé.

USINAGE
En seconde transformation, il est conseillé d’utiliser des outils au carbure de tungstène car le bois est très désaffûtant. Des angles d’attaque faibles sont recommandés (20° en rabotage, 10 à 15° en toupillage). Pour les pièces contrefilées, les outils en acier rapide sont préférés aux outils au carbure car ils permettent d’obtenir de meilleurs états de surface grâce à un affûtage plus précis.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté mais leur tenue est limitée par la très faible densité du bois. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION
Le bois se peint et se vernit sans difficulté avec les produits de finition utilisés dans l’industrie.

CONCLUSIONS ET UTILISATIONS
La principale utilisation de l’okoumé reste le contreplaqué. En effet, les caractéristiques de cette essence (rectitude et dimensions des grumes, faible densité, qualité assez homogène, abondance en forêt) en font un bois très apprécié en déroulage. Les placages d’Okoumé peuvent être utilisés aussi bien en face qu’en plis intérieurs pour la fabrication de contreplaqués à usage intérieur ou extérieur. En général, les noyaux de déroulage sont utilisés pour la fabrication de panneaux lattés. En plus de son utilisation en déroulage, les caractéristiques de l’Okoumé et sa disponibilité élevée le rendent adapté à une large gamme d’utilisations. Il convient notamment pour la fabrication de menuiserie intérieure, de moulures, de lambris, ainsi qu’en ameublement.
OLON

DENOMINATIONS

BOTANIQUE
Fagara heitzii Aubrev. & Pellegr.
Famille des Rutacées

VERNACULAIRES ET COMMERCIALES
Cameroun : Bongo
Congo : M'Banza
Gabon : Olon
République Démocratique du Congo : Kamasumu

DESCRIPTION DU BOIS

L'Olon est jaune paille à jaune verdâtre, à éclat lustré. Sa couleur est stable et se modifie peu avec le temps. L'aubier est peu épais, de couleur très légèrement plus claire que celle du bois parfait. Les débits ont une couleur unie et sont quelquefois parcourus de veines brunes. Les débits sur quartier sont souvent moirés ; les débits sur dosse sont parfois mouchetés de petits noyuds très épar (picots). La structure du bois est très homogène. Le grain est moyen. Le contrefil est assez fréquent, parfois irrégulier, mais peu accusé ; il confère aux faces sur quartier un aspect finement rubané.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

L’Olon est un bois très léger à léger, très tendre à tendre, différent de ce fait de l’Olonvogo ou Olon dur (Fagara macrophylla Engl. et F. tessmannii Engl.). Ses retraits linéaires transverses sont faibles. Ses caractéristiques mécaniques et son retrait volumique sont faibles à moyens.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 450 à 550 kg/m³
Dureté Monnin* : 2
Point de saturation des fibres : 29 %
Retrait volumique total : 11,5 %
Retrait tangiciel total : 5,7 %
Retrait radial total : 3,8 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : moyenne
Contrainte de rupture en compression parallèle* : 44 MPa
Contrainte de rupture en flexion statique* : 80 MPa
Module d'élasticité longitudinal* : 10 000 MPa
DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
L’Olon présente une résistance moyenne vis-à-vis des champignons de pourriture. Il doit subir un traitement de préservation dans tous les emplois où un risque de réhumidification existe. Son utilisation est déconseillée dans tous les emplois exposés à un risque d’humidification permanente ou prolongée. Cette essence est considérée comme moyennement durable vis à vis des champignons lignivores (classe de durabilité : 3) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une durabilité naturelle moyenne vis-à-vis des termites de l'espèce Reticulitermes santonensis. Cette essence est considérée comme moyennement durable vis à vis des termites (classe de durabilité : M) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme moyennement imprégnable à peu imprégnable (classe d’imprégnabilité : 2-3) selon la norme NF EN 350-2. L’aubier étant le plus souvent indifférencié du duramen, il est systématiquement recommandé d’appliquer par trempage ou badigeonnage un traitement de préservation contre tous les types d’attaques biologiques.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
L’Olon se scie sans difficulté. Bien que son taux de silice ne soit pas négligeable (> 0,05%), il présente un caractère désaffûtant normal qui n’oblige pas l’utilisation de lames stellitées.

DÉROULAGE ET TRANCHAGE
L’Olon constitue un excellent bois de déroulage et, dans une moindre mesure, de tranchage. L’étuvage améliore sensiblement la qualité des placages et augmente de façon notable leur souplesse, même s’il n’est pas indispensable pour les rondins fraîchement coupés. Un étuvage à la vapeur à 110°C pendant 24 h donne des résultats satisfaisants en déroulage. Pour le tranchage, un étuvage des quartelles durant 24 h à la vapeur à 50°C peut être conseillé. Les placages de forte épaisseur sont souvent utilisés pour des utilisations spéciales (intérieurs de contreplaqués moulés), en remplacement du Samba. Le déroulage se conduit de façon analogue à celui de l’Okoumé. Le séchage des placages ne pose pas de problème particulier (peu de fentes et très peu d'ondulations).

SÉCHAGE
A l'air libre ou en séchoir artificiel, l'Olon se sèche rapidement, sans difficulté, avec de faibles risques de fentes ou de déformations.
USINAGE
L’Olon s’usine très aisément et ne nécessite pas l’emploi d’outils au carbure de tungstène malgré un taux de silice non négligeable. Pour obtenir un très beau poli, le rabotage est parfois délicat à cause du contrefil. Le bois se toupille, se tenonne, se mortaise et se perce sans difficulté.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION
Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie.

CONCLUSIONS ET UTILISATIONS
L’Olon est principalement une essence déroulage pour la fabrication de contreplaqué. Lorsque les billes ont un cœur sain, les rendements obtenus sont sensiblement identiques à ceux de l’Okoumé. En massif, il convient pour la fabrication de portes intérieures, de moulures, de lambris. Il est utilisé en emballage, en ameublement (meubles courants), en agencement intérieur, pour la fabrication de panneaux latés, ainsi qu’en ossature (massive ou lamellée-collée) et en structure légère pour des pièces peu sollicitées mécaniquement.
OVENGKOL

DÉNOMINATIONS

BOTANIQUE

Guibourtia ehie J. Léonard
Famille des Césalpiniacées

VERNACULAIRES ET COMMERCIALES

Côte d’Ivoire : Amazakoué
Ghana : Hyeduanini, Ehie, Anokye
Gabon : Ovèngkol, Ovangkol
Guinée équatoriale : Palissandro
Allemagne, France, Italie, Royaume-Uni : Ovèngkol, Ovangkol
Pays-Bas : Ovangkol

Sous forme de placages, on l'appelle parfois " Mongoy" ou " Noyer Mongoy".

DESCRIPTION DU BOIS

Le bois parfait d'Ovengkol est brun jaunâtre à chocolat parcouru d'étroites veines grises à noirâtres, certaines étant plus larges, moins distinctes avec des reflets cuivrés. Son aspect est très voisin de celui du Mutenyé (*Guibourtia arnoldiana*) dont il se distingue par sa teinte tirant sur le jaune alors que le Mutenyé tire sur le rose. L'aubier est blanc jaunâtre à l'état frais et devient grisâtre en séchant. Certaines plages de bois présentent des vaisseaux qui renferment des dépôts blanchâtres sans incidence sur le comportement technologique du bois. Ces dépôts peuvent être éliminés superficiellement par lavage à l'eau très chaude. Le grain est fin. Le contrefil est assez fréquent, irrégulier et donne aux débits sur quartier un aspect moiré caractéristique. Les placages tranchés sur quartier présentent une maille très fine et abondante.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

L’Ovengkol est un bois mi-lourd à lourd, dur à très dur. Ses retraits linéaires transverses sont faibles à moyens. Son retrait volumique est moyen à élevé. Ses caractéristiques mécaniques sont moyennes à élevées.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

- **Masse volumique à l'état sec*** : de 700 à 900 kg/m³
- **Dureté Monnin*** : 7,5
- **Point de saturation des fibres** : 24 %
- **Retrait volumique total** : 13,5 %
- **Retrait tangentiel total** : 8 %
- **Retrait radial total** : 3,8 %
- **Sensibilité aux variations d'humidité de l'air** : moyenne
Stabilité en service : moyenne
Contrainte de rupture en compression parallèle*: 69 MPa
Contrainte de rupture en flexion statique*: 141 MPa
Module d'élasticité longitudinal*: 17 300 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
L’Ovengkol présente une bonne résistance vis-à-vis des champignons de pourriture. Il peut être utilisé sans traitement de préservation dans tous les emplois où un risque de réhumidification peut survenir, mais il n’est pas conseillé dans les emplois exposés à un risque d’humidification permanente ou prolongée. Cette essence est considérée comme durable vis à vis des champignons lignivores (classe de durabilité : 2) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une bonne durabilité vis-à-vis des termites de l’espèce Reticulitermes santonensis. Cette essence est considérée comme durable vis à vis des termites (classe de durabilité : D) selon la norme NF EN 350-1, ceci bien que des attaques limitées aient été constatées sur des ouvrages en place en zone tropicale.

IMPRÉGNABILITÉ
Cette essence est considérée comme peu imprégnable (classe d’imprégnabilité : 3) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
L’Ovengkol se scie facilement mais nécessite des équipement adaptés aux bois durs. Le bois étant peu abrasif, le stellitage des lames n’est pas nécessaire.

DÉROULAGE ET TRANCHE
Malgré la densité élevée du bois, les rondins d’Ovengkol se déroulent sans difficulté. Les placages déroulés sont appréciés pour la fabrication de panneaux décoratifs et en ameublement. Cependant, les placages décoratifs d’Ovengkol sont principalement obtenus par tranchage, le déroulage de cette essence étant peu développé. L’étuvage des rondins destinés au déroulage ou des quartelles de tranchage est indispensable. Un étuvage en eau chaude (à 90-95 °C) des quartelles pendant 48 heures ou un étuvage à la vapeur des rondins pendant 48 à 72 heures permet d’obtenir de bons résultats. Le tranchage permet fréquemment d’obtenir des placages moirés. Certains placages présentent parfois des veines
blanchâtres qui peuvent être éliminées par lavage à l'eau très chaude. Les placages tranchés sur dosse sont particulièrement appréciés.

SÉCHAGE
A l'air libre, l'Ovengkol sèche facilement et assez rapidement. Des pièces de 53 à 80 mm d'épaisseur peuvent passer de l'état vert à 20% d'humidité en 8 à 9 mois. Durant le séchage artificiel, les pièces contrefilées ont tendance à se déformer d'où la nécessité d’appliquer une charge sur les piles de bois dans le séchoir.

USINAGE
Malgré sa dureté élevée et son contrefil assez fréquent, l'Ovengkol est un bois qui s'usine facilement avec des outils à mise rapportée de carbure de tungstène. Il est peu abrasif mais nécessite des équipements adaptés aux bois durs. Pour obtenir d’excellents états de surface, il est conseillé de réduire l'angle d'attaque des outils jusqu'à 20°.
Lors du perçage et du mortaisage, le bois a parfois tendance à brûler en surface. Il se moulure, se toupille, se tourne et se sculpte particulièrement bien. Le ponçage permet d’obtenir une excellente finition et un beau poli.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. En conditions industrielles, des avant-trous sont conseillés. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidity relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION
Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie. Il prend très bien les teintes.

CONCLUSIONS ET UTILISATIONS
Ses caractéristiques mécaniques et esthétiques, et sa bonne durabilité naturelle rendent cette essence adaptée à une large gamme d'emplois. Notamment en décoration, l’Ovengkol peut remplacer avantageusement le Teck et le Palissandre. Il est avant tout utilisé en ameublement et en décoration, aussi bien sous forme massive (meubles de style, lambris décoratifs, parquets, éléments d’agencement de haut de gamme) qu'en placages tranchés ou déroulés (meubles modernes, panneaux muraux, etc). Sa bonne durabilité naturelle permet de l'employer dans les aménagements de cuisine et de salles de bains. Il peut être également utilisé en tournerie, en coutellerie, pour la fabrication de manches d'ustensiles, d’instruments de musique, et de crosse de fusils. Il convient aussi pour la fabrication de menuiseries extérieures et intérieures.
OZIGO

DÉNOMINATIONS

BOTANIQUE
Dacryodes buettneri H.J. Lam
Famille des Burseracées

VERNACULAIRES ET COMMERCIALES
Gabon : Assia, Ozigo, Mossigon
Guinée équatoriale : Assia

DESCRIPTION DU BOIS

L'Ozigo est un bois beige grisâtre à rose grisâtre, à éclat lustré, dont l’aspect se rapproche beaucoup de celui de l'Okoumé, en plus grisâtre. L'aubier, généralement de faible largeur et peu distinct du duramen, est gris rosé pâle. Le grain est moyen à grossier. Le fil est généralement droit, parfois légèrement contrarié. Le contrefil est très fréquent, accusé et souvent irrégulier. Les débits sur plein quartier sont rubanés, parfois moirés.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

L’Ozigo est un bois léger à mi-lourd, tendre à mi-dur. Ses retraits linéaires transverses et son retrait volumique sont moyens. Ses caractéristiques mécaniques sont faibles à moyennes.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 500 à 700 kg/m³
Dureté Monnin* : 2,8
Point de saturation des fibres : 35 %
Rtrait volumique total : 13,3 %
Rtrait tangential total : 7,4 %
Rtrait radial total : 5,3 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : moyenne
Contrainte de rupture en compression parallèle* : 52 MPa
Contrainte de rupture en flexion statique* : 101 MPa
Module d'élasticité longitudinal* : 11 200 MPa
DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
L’Ozigo présente une faible résistance vis-à-vis des champignons de pourriture. Sachant qu’il est difficilement imprégnable et que l’aubier est peu distinct du bois parfait, son utilisation est déconseillée dans tous les emplois exposés à un risque d’humidification permanente ou prolongée.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait n’est pas résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une très faible durabilité naturelle vis-à-vis des termites de l’espèce Reticulitermes santonensis.

IMPRÉGNABILITÉ
L’Ozigo est difficilement imprégnable par les produits de préservation.

RÉSISTANCE NATURELLE VIS-À-VIS DES FOREURS MARINS
L’Ozigo présente une bonne résistance naturelle aux tarets ce qui permet son utilisation pour la fabrication de coques de navires.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
L’Ozigo est abrasif et présente un fort caractère désaffûtant du fait de sa teneur élevée en silice (0,1 à 0,5%). Son sciage dans des conditions industrielles nécessite l’emploi de lames stellitées.

DÉROULAGE ET TRANCHANTAGE
L’Ozigo convient très bien à la fabrication de placages et de panneaux de contreplaqués. Il est uniquement déroulé car les placages tranchés n’offrent qu’un intérêt très limité. Les rondins frais de coupe peuvent se dérouler sans étuvage préalable. Cependant, l’étuvage des bois facilite toujours la production et améliore la qualité du placage. Un étuvage en vapeur détendue pendant 48 à 72 heures donne des résultats satisfaisants. Le déroulage se conduit de façon identique à celui de l’Okoumé (taux de compression, cote verticale et passage identiques). Cependant, les meilleurs résultats sont obtenus en faisant varier l’angle de dépouille en cours de déroulage de + 3° au début à + 0°30’ en fin de déroulage. Le rendement matière et le rendement qualité sont très comparables à ceux de l’Okoumé. Les placages d’Ozigo se séchent dans les mêmes conditions que ceux d’Okoumé, mais plus lentement, avec de faibles risques d’ondulations ou de fentes de retrait. Le collage des placages peut présenter quelques difficultés, d’où la nécessité de sécher parfaitement les bois et d’augmenter légèrement le grammage de colle.
SÉCHAGE
L’Ozigo présente très souvent un contrefil important. De ce fait, le séchage doit être mené lentement afin de limiter les risques de déformations.

USINAGE
Du fait de sa forte teneur en silice et de son contrefil fréquemment accusé, l’Ozigo est un bois assez difficile à usiner et qui ne permet pas d’obtenir d’excellents états de surface, ceci aussi bien au dégauchisage et au rabotage qu’au moulurage. Les meilleurs résultats sont obtenus en utilisant des outils à mise rapportée de carbure de tungstène et en réduisant autant que possible l’angle d’attaque des outils (jusqu’à environ 15°). Les débits sur dosse donnent les meilleurs états de surface après usinage.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue.
Le collage présente certaines difficultés, notamment avec les colles phénol-formol.

FINITION
Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie. Lorsqu’un parfait état de surface est recherché, l’application d’un fond dur ou un bouche-porage est conseillé.

CONCLUSIONS ET UTILISATIONS
L’Ozigo est principalement utilisé en déroulage pour la fabrication de panneaux de contreplaqués destinés au coffrage ou la fabrication de meubles peints. Son comportement est voisin de celui de l’Okoumé, mais il nécessite un étuvage plus soutenu et son séchage est plus long et plus délicat.
Il est peu utilisé sous forme massive du fait de son manque de stabilité, de son contrefil fréquemment accusé et de sa teneur élevée en silice. Il peut être cependant utilisé en menuiserie intérieure, pour la fabrication d’ossatures ou d’éléments de meubles, éventuellement pour la fabrication de lambris et parquet. L’Ozigo présente une bonne résistance naturelle aux tarets ce qui permet de l’utiliser pour la fabrication de coques de navires.
PADOUK

DÉNOMINATIONS

BOTANIQUE
Pterocarpus soyauxii Taub.
Famille des Fabacées

VERNACULAIRES ET COMMERCIALES
Angola : Tacula
Cameroun, Gabon : M'Bel
Congo : Kisésé
Nigéria : Osun
République Démocratique du Congo : N'Gula, Mukula, Mongola
Allemagne : Afrikanisches Padouk
Belgique : Corail
Pays-Bas : Afukaans, Padock
Royaume Uni : Padouk, Barwood, Camwood

DESCRIPTION DU BOIS

Le bois parfait de Padouk est rouge corail lorsqu'il est frais de sciage, puis devient en quelques jours brun-mauve foncé après exposition à l'air. Il prend par la suite une teinte de plus en plus brun gris violacé. Le bois est parfois parcouru de veines brunâtres peu délimitées. L'aubier est bien différencié, de teinte blanchâtre. Le grain est plutôt grossier. Le contrefil est occasionnel, régulier et peu accusé, donnant aux débits sur quartier un aspect finement rubané. Le fil est assez droit. Les cernes d'accroissement sont visibles et donnent aux débits sur dosse un aspect figuré.

PRINCIPALES PROPRITÉS PHYSIQUES ET MÉCANIQUES

Le Padouk est un bois mi-lourd à lourd, mi-dur à très dur. Ses retraits linéaires transverses sont particulièrement faibles par rapport à sa densité. Son retrait volumique est moyen. Ses caractéristiques mécaniques sont moyennes à élevées.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 650 à 900 kg/m3
Dureté Monnin* : 8
Point de saturation des fibres : 22 %
Retrait volumique total : 8 %
Retrait tangentiel total : 5 %
Retrait radial total : 3,2 %
Sensibilité aux variations d'humidité de l'air : faible
Stabilité en service : très bonne
Contrainte de rupture en compression parallèle* : 64 MPa
Contrainte de rupture en flexion statique* : 126 MPa
Module d'élasticité longitudinal* : 12 600 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Padouk présente une très bonne résistance vis-à-vis des champignons de pourriture. Il est préconisé et conseillé dans tous les emplois exposés à un risque d’humidification permanente ou prolongée. Cette essence est considérée comme très durable vis à vis des champignons lignivores (classe de durabilité : 1) selon la norme NF EN 350-1. Elle couvre naturellement (sans traitement de préservation) la classe 4 de risque biologique.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une très bonne durabilité naturelle vis-à-vis des termites de l’espèce Reticulitermes santonensis. Cette essence est considérée comme durable vis à vis des termites (classe de durabilité : D) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme moyennement imprégnable (classe d’imprégnabilité : 2) selon la norme NFEN 350-2. Sous climat tropical, elle peut être utilisée en contact permanent et direct avec le sol après traitement à la créosote, et peut être utilisée en milieu marin après traitement contre les foreurs marins (tarets).

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Padouk se scie facilement à l’aide d’équipements adaptés au sciage des bois durs. Son taux de silice est négligeable et sa dureté élevée lui confèrent un caractère abrasif modéré. Cependant, dans des conditions de transformation industrielle, le stellitage des lames est conseillé. Certaines grumes présentent des roulures.

DÉROULAGE ET TRANCHAGE
Le Padouk n’est pas utilisé en déroulage. Il se tranche facilement et donne des placages de qualité esthétique recherchée, mais dont la couleur est peu stable. Un étuvage des quartelles de tranchage est indispensable car les bois sont très denses (vapeur détendue pendant environ 48 heures). La qualité des placages n’est pas très constante (noeuds et fil irrégulier chez certaines grumes).
SÉCHAGE
Le Padouk se sèche sans difficulté et relativement rapidement, avec de faibles risques de fentes ou de déformations. Le séchage à l'air permet d'abaisser rapidement le taux d'humidité des bois jusqu'à environ 15%. Par la suite, un séchage artificiel en séchoir traditionnel permet d'atteindre rapidement des taux d'humidité du bois inférieurs à 10%.

USINAGE
Du fait de son fil généralement régulier, du contrefil peu accusé et de son faible taux de silice, le Padouk s'usine facilement malgré sa dureté élevée. L'emploi d'outils à mise rapportée de carbure de tungstène n'est pas nécessaire, mais son usinage nécessite des équipements adaptés aux bois durs. Il se dégauchit, se rabote, se moulure, se tenonne, se mortaise et se perce sans difficulté. Pour les pièces contrefilées, l'angle d'attaque des outils doit être réduit.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. En conditions industrielles, des avant-trous sont conseillés. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient parfaitement respectées compte tenu de la densité élevée du bois.

FINITION
Le bois se peint et se vernit généralement sans difficulté avec les principaux produits de finition utilisés dans l'industrie, bien que certains bois soient comme l'Iroko réfractaires aux produits qui contiennent des huiles siccatives libres et qui sèchent par oxydation. Il est de ce fait conseillé d’utiliser des peintures ou vernis à base de résines synthétiques (cellulosiques, vinyliques ou polyuréthanes) qui sèchent par polymérisation. Ces produits peuvent servir de couche d'impression et constituer le support de base pour les autres catégories de produits de finition. Lorsqu'un excellent état de surface est recherché, un bouche-porage préalable est conseillé.

CONCLUSIONS ET UTILISATIONS
Le Padouk présente d'intéressantes qualités technologiques : très bonne durabilité naturelle (couverture de la classe de risque biologique 4 sans traitement de préservation), bonne stabilité, faible abrasivité malgré une dureté élevée, séchage facile et rapide, usinage facile. Sa couleur rouge vif à l’état frais le rend très attractif, mais elle évolue et passe avec le temps ; il n’existe aucun produit de finition qui permette réellement de la stabiliser de façon durable.

Ce bois convient pour la fabrication de menuiseries extérieures, portes d'entrée, fermetures extérieures, fenêtres, portes-fenêtres, parquets de haut de gamme ou à usage intensif. Il convient aussi comme bois d'environnement (passerelles, mobilier et aménagement urbain, murs anti-bruit, abris, cabines, etc) et en aménagement extérieur (portails, vérandas, pergolas). Son excellente durabilité le rend adapté à tous les emplois présentant un risque d'humidification permanente et pour les ouvrages soumis aux intempéries : installations portuaires, jetées, estacades, constructions hydrauliques en eau douce (écluses). Il est aussi apprécié en construction navale. Il est utilisé pour de nombreux emplois intérieurs : charpente apparente, menuiserie, agencement, escalier, ameublement. Il convient aussi en tournerie ainsi qu’en coutellerie.
SAPELLI

DÉNOMINATIONS

BOTANIQUE
Entandrophragma cylindricum Sprague
Famille des Méliacées

VERNACULAIRES ET COMMERCIALES
Cabinda et Mayombe congolais: Lifuti
Cameroun : Assié, Sapelli
Congo : Lifaki
Côte d'Ivoire : Aboudikro
Gabon : Asi, Dilolo
Ghana : Penkwa
Nigeria : Sapele
Ouganda : Muyovu
République Centrafricaine et Nord du Congo : M'Boyo
République Démocratique du Congo : Libuyu
Angleterre : Sapele

DESCRIPTION DU BOIS

Le bois est brun rosé, fonçant à l'air et tournant au brun rouge cuivré. L'aubier est distinct et bien limité, de couleur gris rosâtre, en général peu épais. Le grain est plutôt fin. Le bois présente généralement un contrefil en bandes étroites qui donne aux débits sur plein quartier un aspect rubané très régulier apprécié en ébénisterie. Le fil est parfois tourmenté ; les débits sont alors moirés, pommelés, drapés ou chenillés. Les fourches peuvent donner des placages très figurés. Le Sapelli a généralement une odeur agréable rappelant celle du Cèdre.

Le parenchyme se détache bien sur le fond fibreux et présente dans les plus larges cernes trois dispositions caractéristiques : associé aux pores et à peine distinct à la loupe, puis circumvasculaire aliforme plus ou moins anastomosé et bien distinct, enfin composé de fines couches tangentielles apparentes à la limite des anneaux ligneux. Les pores sont de taille moyenne en nombre variable et assez uniformément répartis. Les ponctuations intervasculaires et les ponctuations vaisseau-rayon sont très fines. Les rayons sont disposés fréquemment en lignes étagées, de petite taille, larges de 3 à 5 cellules, presque homocellulaires, avec une rangée terminale de cellules carrées contenant souvent des cristaux.

Le Sapelli se différencie des autres Entandrophragma par la présence d'un peu de parenchyme entre les lignes terminales, et de rayons 3-5 séríés contenant des cristaux.
PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Sapelli est un bois léger à mi-lourd, mi-dur. Ses caractéristiques mécaniques et ses retraits linéaires transverses sont faibles à moyens. Son retrait volumique est moyen.

Nota: les valeurs ci-après précédées d’un astérisque correspondent à un taux d’humidité du bois de 12 % (norme française NF B 51-002).

- **Masse volumique à l’état sec***: de 600 à 780 kg/m³
- **Dureté Monnin***: 4,2
- **Point de saturation des fibres**: 29 %
- **Retrait volumique total**: 13,1 %
- **Retrait tangéntiel total**: 7 %
- **Retrait radial total**: 5 %
- **Sensibilité aux variations d’humidité de l’air**: faible à moyenne
- **Stabilité en service**: moyenne
- **Contrainte de rupture en compression parallèle***: 62 MPa
- **Contrainte de rupture en flexion statique***: 114 MPa
- **Module d’élasticité longitudinal***: 11 300 MPa

DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS

Le Sapelli présente une résistance moyenne vis à vis des champignons de pourriture. Il n’est pas nécessaire de lui appliquer un traitement de préservation dans les emplois où un risque de réhumidification existe. Son utilisation est déconseillée dans les emplois exposés à un risque d’humidification permanente ou prolongée. Cette essence est considérée comme moyennement durable vis à vis des champignons lignivores (classe de durabilité : 3) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS

Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES

Le bois présente une durabilité naturelle moyenne vis-à-vis des termites de l’espèce Reticulitermes santonensis. Cette essence est considérée comme moyennement durable vis à vis des termites (classe de durabilité : M) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ

Cette essence est considérée comme peu imprégnable (classe d’imprégnabilité : 3) selon la norme NF EN 350-2.
CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Sapelli se scie facilement et sans difficulté. Le taux de silice est négligeable et le bois présente un caractère désaffûtant normal. Certaines billes présentent des contraintes de croissance et un sciage par retournement est conseillé.

DÉROULAGE ET TRANCHAGE
Le Sapelli peut se dérouler, mais il est principalement tranché. Un étuvage à 85°C pendant 48 à 72 heures donne des résultats satisfaisants. Les placages de Sapelli sèchent relativement facilement avec de faibles risques de fentes de retrait, mais avec parfois l’apparition d’ondulations et de déformations dues aux irrégularités de fil. Ils se collent sans difficulté.

SÉCHAGE
Le Sapelli sèche assez lentement, tant à l'air qu'artificiellement. Les risques de fente sont faibles, mais les bois contrefilés ont tendance à se déformer. Le temps de séchage des pièces débitées sur quartier est très largement supérieur (par rapport à la normale) à celui des pièces sur dosse.

USINAGE
Au rabotage et au toupillage, les zones de bois très contrefilées ont tendance à donner de mauvais états de surface. Il est conseillé de réduire l'angle d'attaque et de le maintenir entre 15° et 20°. Le Sapelli se polit sans difficulté exceptées les parties très contrefilées qui nécessitent un ponçage plus prononcé et particulièrement soigné avant l’application de produits de finition.

ASSEMBLAGE
Les clous, agraфes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. En conditions industrielles, des avant-trous sont conseillés. Le collage donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION
Le bois se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie. Les bois très contrefilés nécessitent préalablement un ponçage très soigné.

CONCLUSIONS ET UTILISATIONS
Sous forme massive ou en placages, le Sapelli est avant tout utilisé en ébénisterie, en menuiserie apparente de haut de gamme, en décoration et en ameublement. Il est très apprécié en tranchage et les billes figurées ou rayonnées sont toujours réservées à la production de placages tranchés (placages moirés, ondés, pommelés, etc) utilisés en décoration. Tranchés sur quartier, les bois rayonnés sont très recherchés pour leur rubanage dans la fabrication de meubles plaqués, de contreplaqués d’ébénisterie en aménagement intérieur. Le Sapelli est également employé en contreplaqué pour la menuiserie et la fabrication de portes planes. Les bois non figurés sont utilisés en menuiserie intérieure et en menuiserie extérieure comme le Sipo. Le Sapelli peut aussi convenir à la fabrication de parquet, de lambris, d’escaliers. Il est utilisé en construction navale.
SIPO

DÉNOMINATIONS

BOTANIQUE
Entandrophragma utile Sprague
Famille des Méliacées

VERNACULAIRES ET COMMERCIALES
Côte d'Ivoire : Sipo, Mébrou
Ghana : Afrobrodiju
Nigeria : Okeong
Cameroun : Asseng-Assié, Timbi, Assié
Gabon : Kosi-Kosi
République Centrafricaine : Kelon, Bokoi
Congo : Kalungi, Libuyu
Ouganda : Mufumbi
Cabinda : Undianuno
Grande-Bretagne : Utile

DESCRIPTION DU BOIS

L'aubier est de couleur blanc rosé, souvent un peu grisâtre. Le bois parfait est d'une belle couleur brun rosé légèrement violacée, plus ou moins foncée, à reflets parfois moirés. Le grain est assez fin. Le contrefil est généralement peu marqué et donne aux faces sur maille comme aux placages tranchés sur quartier un aspect rubané avec des veines assez larges et régulières. Les débuts sur dosse et les placages déroulés ont des ramages foncés. La texture du bois est très homogène.

Parmi les bois de couleur acajou, le Sipo se caractérise par un parenchyme en ligne continue en limite d'accroissement et des bandes de parenchyme discontinues, fines et ondulées en cours d'accroissement. Les rayons peuvent être ou non en disposition étagée ; ils sont larges de 2 à 3 cellules et ne contiennent pas de cristaux. Certains échantillons de Sipo peuvent présenter des écarts importants vis-à-vis du bois type, dans l’aspect et la structure. L’épaisseur variable des parois de fibres donne des bois de densités très différentes. La teinte de base du bois varie de l'acajou cuivré clair, à peine violacé au lie-de-vin rappelant le Kosipo. Cette variation est renforcée par celle du parenchyme, tantôt très rare dans des accroissements très larges, tantôt très abondant dans des accroissements fins.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

Le Sipo est un bois léger à mi-lourd, tendre à mi-dur. Ses caractéristiques mécaniques, ses retraits linéaires transverses et son retrait volumique sont faibles à moyens.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 550 à 680 kg/m³
Dureté Monnin* : 3
Point de saturation des fibres : 30 %
Retrait volumique total : 12,4 %
Retrait tangentiel total : 6,4 %
Retrait radial total : 4,6 %
Sensibilité aux variations d'humidité de l'air : faible à moyenne
Stabilité en service : bonne à moyenne
Contrainte de rupture en compression parallèle* : 56 MPa
Contrainte de rupture en flexion statique* : 101 MPa
Module d'élasticité longitudinal* : 10 700 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Sipo présente une résistance moyenne vis à vis des champignons de pourriture. Il n’est pas nécessaire de lui appliquer un traitement de préservation dans les emplois où un risque de réhumidification existe. Son utilisation est déconseillée dans tous les emplois exposés à un risque d’humidification permanente ou prolongée. Cette essence est considérée comme durable à moyennement durable vis à vis des champignons lignivores (classe de durabilité : 2-3) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une durabilité naturelle moyenne vis-à-vis des termites de l’espèce Reticulitermes santonensis. Cette essence est considérée comme moyennement durable vis à vis des termites (classe de durabilité : M) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme non imprégnable (classe d’imprégnabilité : 4) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Sipo se scie facilement et sans difficulté. Le taux de silice est négligeable et le bois présente un caractère désaffûtant normal.
DÉROULAGE ET TRANCHEAGE
Le Sipo convient bien à la fabrication de placages et de panneaux de contreplaqués. Un étuvage à 85°C pendant 48 à 72 heures donne des résultats satisfaisants. Les placages de Sipo sèchent facilement avec de faibles risques de fentes de retrait. Ils se collent sans difficulté.

SÉCHAGE
Le séchage à l'air du Sipo est relativement rapide, sans risque de déformation pour les bois dont le fil est régulier. En séchage artificial, les bois contrefilé ont tendance à se déformer et les fentes préexistantes ont tendance à s'ouvrir. Il est recommandé d’utiliser une table de séchage douce et d’appliquer une charge sur les piles de bois pour limiter les risques de déformations.

USINAGE
Le rabotage et le toupillage se font sans difficulté à l'aide d'outils classiques (angle d'attaque réglé habituellement à 32°), mais pour les usinages en grande série, il est préférable pour éviter les mauvais états de surface de réduire l’angle d'attaque à 15-20°. Le ponçage est facile.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FITION
Le bois se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie.

CONCLUSIONS ET UTILISATIONS

Le Sipo est très apprécié en menuiserie extérieure, pour la fabrication de portes d'entrée, de fermetures extérieures, fenêtres et portes-fenêtres, volets roulants. En massif, il est également utilisé en ébénisterie, en décoration, pour les menuiseries haut de gamme, en agencement intérieur, pour l'aménagement de navires, la fabrication de moulures. Il peut convenir pour la fabrication de meubles, d’escaliers, de parquet. Il est utilisé pour la construction d’embarcations légères ainsi qu’en lamellé-collé. Il est employé sous forme de placages en ameublement, dans la fabrication de panneaux de contreplaqués d’ébénisterie, et en décoration.
TALI

DENOMINATIONS

BOTANIQUES
Erythrophleum ivorense A. Chev. (= E. micranthum G. Don)
Erythrophleum suaveolens Brenan (= E. guineense Harms)
Famille des Césalpiniacées

VERNACULAIRES ET COMMERCIALES
Cameroun, Gabon : Eloun, Elone
Congo, République Démocratique du Congo : N’Kassa
Côte d’Ivoire : Alui, Tali
Ghana : Potrodon
Guinée Bissau : Mancone
Guinée équatoriale : Elondo
Mozambique : Missanda
Nigeria : Erun, Sasswood
Sénégal : Tali
Sierra Leone : Gogbei
Tanzanie : Mwawi
Allemagne, France, Pays-Bas : Tali
Royaume-Uni : Missanda

DESCRIPTION DU BOIS

A l’état frais, le bois parfait de Tali est brun-jaune, nuancé de reflets cuivrés. Après séchage, il prend une couleur brun-roux avec quelques veines peu apparentes plus sombres apparaissant en bois de bout comme des cernes concentriques. L’aubier bien différencié est de couleur blanc crème. Les cernes d’accroissement sont peu visibles ; lorsqu’ils sont larges, ils sont soulignés par une fine veine brune. Le grain est plutôt grossier. Les nombreux pores et les traces vasculaires sont très apparents, de diamètre assez important, et présentent fréquemment des dépots jaunâtres. Le contrefil est fréquent, plutôt irrégulier et accusé. Le fil est souvent ondulé ou irrégulier.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Tali est un bois lourd à très lourd, dur à très dur. Ses retraits linéaires transverses et son retrait volumique sont moyens à élevés. Ses caractéristiques mécaniques sont moyennes à élevées.

Nota : les valeurs ci-après précédées d’un astérisque correspondent à un taux d’humidité du bois de 12 % (norme française NF B 51-002).
Masse volumique à l’état sec*: de 800 à 1050 kg/m³
Dureté Monnin*: 9,5
Point de saturation des fibres : 26 %
Retrait volumique total : 14,5 %
Retrait tangentiel total : 8,5 %
Retrait radial total : 5,2 %
Sensibilité aux variations d'humidité de l'air : élevée
Stabilité en service : moyenne
Contrainte de rupture en compression parallèle* : 79 MPa
Contrainte de rupture en flexion statique* : 142 MPa
Module d'élasticité longitudinal* : 15 600 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Tali présente une très bonne résistance vis-à-vis des champignons de pourriture. Il est préconisé dans tous les emplois exposés à un risque d’humidification permanente (constructions lourdes et ouvrages exposés aux intempéries). Il couvre naturellement (sans traitement de préservation) la classe 4 de risque biologique.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une très bonne durabilité naturelle vis-à-vis des termites de l'espèce Reticulitermes santonensis.

IMPRÉGNABILITÉ
Le Tali est très difficilement imprégnable par les produits de préservation.

Remarque : Le Tali peut être attaqué par les xylophages marins dans les constructions hydrauliques en eaux marines, ou saumâtres, en particulier dans les régions tropicales.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Tali est un bois souvent très dur dont le sciage nécessite des équipements adaptés à ce type de bois. Son taux de silice est négligeable mais son effet désaffûtant est assez élevé. Son sciage nécessite une vitesse d'amenage assez faible et l’utilisation de lames épaisses stellitées.

DÉROULAGE ET TRANCHAGE
Le Tali n'est pas une essence déroulable. Il est très difficile à trancher, les placages tranchés n’ayant de plus que très peu d’intérêt commercial.
SÉCHAGE
En raison du contrefil fréquent et accusé, les sciages de Tali ont tendance à se déformer au séchage (voilement, gauchissement, tuilage). Un ressuyage à l'air de quelques mois est recommandé avant le séchage artificiel.

USINAGE
Malgré son contrefil accusé et son grain plutôt grossier, le Tali est un bois qui s’usine relativement bien et qui peut prendre un beau poli. Durant le rabotage, le moulurage et le tenonnage, il est conseillé de réduire l’angle d’attaque des outils jusqu’à 10 à 15° (angle de bec voisin de 40-45°) et de diminuer les vitesses d’avance des machines afin de limiter les risques d’éclats. Le Tali se tourne bien et se perce sans difficulté bien que le bois ait tendance à carboniser légèrement en surface. Un système d’aspiration efficace est nécessaire car les poussières produites peuvent être parfois légèrement irritantes pour les voies respiratoires.

ASSEMBLAGE
Les clous, agrafes et vis se fixent sans difficulté et ont une bonne tenue. En conditions industrielles, des avant-trous sont indispensables compte tenu de la dureté élevée du bois et des risques de fente. Les organes d’assemblages métalliques (boulons, vis) peuvent être attaqués par le bois. La conception des assemblages et des fixations doit être prévue en conséquence. Comme pour tous les bois très durs, le collage est délicat mais donne de bons résultats à condition que les modalités de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient parfaitement respectées.

FINITION
Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie.

CONCLUSIONS ET UTILISATIONS
Le Tali est un bois très lourd et très dur, d'une excellente durabilité naturelle qui permet de l'utiliser sans traitement de préservation dans tous les emplois exposés en cas d'humidification permanente, y compris au contact du sol. Il couvre naturellement la classe 4 de risque biologique. Il est adapté pour les constructions lourdes, pour les ouvrages en milieu exposé (installations portuaires, estacades, jetées, écluses), pour les charpentes lourdes exposées aux intempéries, pour les constructions rurales (écuries, étables, hangars), ainsi que pour la fabrication de ponts (éléments porteurs et répartiteurs de charge), de traverses de chemin de fer et de fonds de véhicule. Il peut être utilisé en menuiserie extérieure (croisées, portes croisées, portes d'entrée, fermetures extérieures, portes de garages). Sa résistance à l'usure et aux produits chimiques (acides minéraux dilués) lui permet d'être utilisé pour la fabrication de planchers industriels et de ponts de bateaux de pêche. Il se tourne bien et peut convenir pour la fabrication de manches d'outils.
TCHITOLA

DÉNOMINATIONS

BOTANIQUES
Oxystigma oxyphyllum J. Léonard (= Pterygopodium oxyphyllum Harms)
Famille des Césalpiniacées

VERNACULAIRES ET COMMERCIALES
Angola : Tola chinfuta, Tola mafuta
Gabon : Emola
Congo : Tchitola, Kitola
Nigeria : Lolagbola
République Démocratique du Congo : Tschibudimbu, Akwakwa
Pays-Bas : Rode Tola
Portugal : Tola chinfuta, Tola mafuta

DESCRIPTION DU BOIS

Le bois parfait de Tchitola est brun cuivré parcouru de veines sombres chocolat, et quelquefois plus ou moins nuancé de rougeâtre. Il est très résineux, le séchage n'éliminant que partiellement ce défaut. Sa couleur foncée et son veinage le distinguent facilement du Tola. L'aubier est bien distinct, de couleur gris rose, extrêmement résineux. On distingue parfois entre l’aubier et le bois parfait, une troisième zone de bois dont la couleur et la durabilité sont intermédiaires entre ces deux types de bois. Le grain est fin à moyen. Les traces vasculaires sont soulignées par leur contenu résineux sombre. La texture est très homogène. Le fil est généralement droit. Le contrefil est peu fréquent et peu marqué. Les sciages et les placages présentent des taches sombres dues aux exsudations de résine. Ces taches, très marquées sur la section des sciages, sont parfois si nombreuses qu'elles recouvrent presque en totalité la surface du bois. Les placages ou les débits sur plein quartier présentent un aspect lustré et une maillure très fine et très abondante.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

Le Tchitola est un bois mi-lourd et mi-dur. Ses retraits linéaires transverses sont faibles à moyens. Ses caractéristiques mécaniques et son retrait volumique sont moyens.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l’état sec* : de 600 à 750 kg/m³
Dureté Monnin* : 3,3
Point de saturation des fibres : 26 %
Retrait volumique total : 11 %
Retrait tangentiel total : 7,5 %
Retrait radial total : 3,9 %
Sensibilité aux variations d'humidité de l'air : moyenne
Stabilité en service : bonne à moyenne
Contrainte de rupture en compression parallèle*: 58 MPa
Contrainte de rupture en flexion statique*: 108 MPa
Module d'élasticité longitudinal*: 12 000 MPa

DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Tchitola présente une résistance moyenne vis à vis des champignons de pourriture. Il doit donc subir un traitement de préservation dans tous les emplois où un risque de réhumidification existe. Son utilisation est déconseillée dans tous les emplois exposés à un risque d’humidification permanente ou prolongée. Cette essence est considérée comme moyennement durable vis à vis des champignons lignivores (classe de durabilité : 3) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois parfait présente une durabilité naturelle moyenne vis-à-vis des termites de l’espèce Reticulitermes santonensis. Cette essence est considérée comme moyennement durable vis à vis des termites (classe de durabilité : M) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme peu imprégnable à non imprégnable (classe d’imprégnabilité : 3-4) selon la norme NF EN 350-2.

CARACTÉRISTIQUES DE MISE EN ŒUVRE

SCIAGE
Le Tchitola se scie facilement, mais la résine a tendance à encrasser les lames. Le bois est cependant très peu abrasif et les lames en acier ordinaire présentent une tenue de coupe suffisante.

DÉROULAGE ET TRANCHEAGE
Le Tchitola est un bois qui convient à la fabrication de placages déroulés et de panneaux de contreplaqués d’usage courant. Il se tranche assez bien et donne des placages appréciés en ameublement courant pour leurs qualités esthétiques. Les rondins de Tchitola peuvent se dérouler sans étuvage préalable lorsqu’ils sont de coupe très fraîche. Un léger étuvage améliore cependant la qualité des placages obtenus. Un étuvage à la vapeur détendue légèrement plus prolongé que celui de l’Okoumé donne des résultats satisfaisants. Pour le tranchage, un faible étuvage en eau chaude de 24 heures à 50°C est conseillé, notamment pour limiter les inconvénients.
dus à la résine. L'opération de déroulage ne pose pas de problème particulier. Le bois est très peu abrasif et la tenue des couteaux est satisfaisante. De bons résultats sont obtenus en faisant varier l'angle de dépouille de 1,5° pendant le déroulage. La résine abondante encrasse rapidement les équipements de manutention et les séchoirs, et rend nécessaire un séchage assez lent des placages à une température relativement basse (environ 110°C).

Le Tchitola se tranche facilement, mais l'aubier souvent très large ne permet pas d'obtenir de bons rendements matière. L'étuvage élimine une partie de la résine ce qui évite aux placages de se recoller en sortie de trancheuse.

SÉCHAGE
Le Tchitola sèche assez facilement et assez rapidement, les risques de fentes et de déformations étant très limités.

USINAGE
Le Tchitola s'usine facilement. Le bois n’est pas abrasif, mais la résine a tendance à s'accumuler et à encrasser les outils. Pour éviter les mauvais états de surface dus au contrefil, il est conseillé d’utiliser systématiquement des outils avec un angle d'attaque de 20° et un angle de bec de 35°. La résine encrasse rapidement les bandes de ponçage, mais le bois peut prendre un beau poli.

ASSEMBLAGE
Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. Malgré la présence de résine, le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION
Le Tchitola se peint et se vernit sans difficulté, mais afin de limiter les problèmes dus aux exsudations de résine, il est conseillé d’utiliser des produits de finition adaptés et de veiller à la qualité du séchage des bois à traiter.

CONCLUSIONS ET UTILISATIONS
Le Tchitola est principalement utilisé en déroulage pour la fabrication de panneaux de contreplaqués courants utilisés en coffrage et en extérieur. Son utilisation est essentiellement limitée par la présence de résine dans le bois à l’origine de problèmes techniques dans le cycle de fabrication. Il est aussi apprécié en tranchage pour la fourniture de placages courants. Sous forme massive, il convient en menuiserie intérieure et en ameublement courant, ainsi que pour la fabrication de panneaux lattés, de charpentes et d’ossatures légères.
TIAMA

DÉNOMINATIONS

BOTANIQUES
Entandrophragma angolense C.DC.
Entandrophragma congoense A.Chev.
Famille des Méliacées

VERNACULAIRES ET COMMERCIALES
Angola : Livuite, Acuminata*
Congo : Kiluka
Côte d'Ivoire : Tiama
Gabon : Abeubegne
Ghana : Edinam
Guinée Équatoriale : Dongomanguila
Nigeria : Gedu-Nohor
Ouganda : Mukusu
République Démocratique du Congo : Lifaki, Vovo

Allemagne : Tiama-Mahagoni, Acuminata
Grande Bretagne : Gedu-Nohor
* : E. congoense var. acuminata présente un bois plus foncé, à grain plus fin, rappelant l'aspect du Sapelli

DESCRIPTION DU BOIS

Le bois parfait est de couleur uniforme brun rose, fonçant légèrement à la lumière. L'aubier est différencié, de couleur plus claire. Le grain est plutôt grossier, les vaisseaux uniformément répartis et les pores très ouverts. Le contrefil est fréquent, assez accusé mais régulier ; il confère au bois un aspect rubané apprécié en ébénisterie. Des zones d’accroissement sont discernables à la présence de fines lignes concentrées de tissu plus clair, formées au début des périodes d’activité végétative, plus ou moins régulièrement espacées de quelques millimètres. Les pores sont gros, disséminés plus ou moins uniformément, entourés de marchons de parenchyme. Des rayons ligneux multisériés, à peine visibles sans loupe, sinueux au niveau des pores, ponctuent finement le bois.

PRINCIPALES PROPRIÉTÉS PHYSIQUES ET MÉCANIQUES

Le Tiama est un bois léger, tendre à mi-dur. Ses retraits linéaires transverses et son retrait volumique sont moyens. Ses caractéristiques mécaniques sont faibles à moyennes.
Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec*: de 500 à 650 kg/m³
Dureté Monnin*: 2,4
Point de saturation des fibres: 33 %
Retrait volumique total: 12 %
Retrait tangentiel total: 7,2 %
Retrait radial total: 4,7 %
Sensibilité aux variations d’humidité de l’air: moyenne
Stabilité en service: moyenne à élevée
Contrainte de rupture en compression parallèle*: 49 MPa
Contrainte de rupture en flexion statique*: 92 MPa
Module d’élasticité longitudinal*: 9 100 MPa

DURABILITE ET IMPREGNABILITE

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Tama présente une résistance naturelle moyenne vis-à-vis des champignons de pourriture. Il doit subir un traitement de préservation dans tous les emplois où un risque de réhumidification peut survenir. Son utilisation est déconseillée dans tous les emplois exposés en cas d’humidification permanente. Cette essence est considérée comme moyennement durable vis à vis des champignons lignivores (classe de durabilité : 3) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYCTUS
Le bois parfait est résistant aux attaques de Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
Le bois présente une très faible durabilité naturelle vis-à-vis des termites de l’espèce Reticulitermes sanotonensis. Cette essence est considérée comme sensible aux termites (classe de durabilité: S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme non imprégnable (classe d’imprégnabilité: 4) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Tama n’est pas siliceux et se scie facilement ; l’outillage en acier, même faiblement allié, a une tenue de coupe suffisante, mais l’obtention d’excellents états de surface nécessite un affûtage parfait.
DÉROULAGE ET TRANCHAGE

Le Tiama se déroule facilement et se tranche sans difficulté. Il est employé sous forme de placages dans de nombreux emplois haut de gamme. Un étuvage à 85°C pendant 48 à 72 heures donne des résultats satisfaisants. Les placages sèchent facilement avec de faibles risques de fentes de retrait ; ils se collent sans difficulté.

SÉCHAGE

Le séchage à l'air du bois massif ne présente pas de difficulté, mais le séchage artificiel est délicat car la présence de contrefil induit des risques de déformation des pièces. Il est de ce fait conseillé d'utiliser une table de séchage douce et d’appliquer une charge sur les piles de bois dans le séchoir.

USINAGE

Le Tiama s’usine sans difficulté particulière ; le bois n’est pas désaffûtant. Le contrefil n’a pas d’incidence sur le rabotage ; cependant, il est conseillé d’utiliser un angle d’attaque de 15° à 20° pour limiter les risques d’arrachements de fibres, notamment pour le toupillage des bois débités sur quartier.

ASSEMBLAGE

Les clous, agrafes, chevilles métalliques et vis se fixent sans difficulté et ont une bonne tenue. Le collage ne présente aucune difficulté particulière et donne de bons résultats avec toutes les colles utilisées couramment dans l’industrie sous réserve que les conditions de mise en œuvre requises (température et humidité relative dans l’atelier de collage, humidité du bois, qualité des états de surface, grammage préconisé, etc.) soient respectées.

FINITION

Le bois se peint et se vernit sans difficulté avec les principaux produits de finition utilisés dans l’industrie. Lorsqu’un parfait état de surface est recherché, en particulier en ameublement, l’application d’un fond dur ou un bouche-porage est conseillé.

CONCLUSIONS ET UTILISATIONS

Le Tiama peut être utilisé en menuiserie et revêtement extérieurs, sous forme de placages tranchés en décoration et en ébénisterie, et pour les faces de contreplaqué. Il est apprécié en menuiserie intérieure, pour la fabrication de meuble, de parquet à usage courant et d’escaliers. Il convient pour la construction de bateaux de plaisance (bordés et ponts). Il est recommandé d’utiliser des sciages parfaitement séchés à un faible taux d’humidité, de préférence débités sur quartier en évitant les sections trop faibles, de façon à limiter les risques de déformation.
TOLA

DENOMINATIONS

BOTANIQUES
Gossweilerodendron balsamiferum Harms
Famille des Césalpiniaées

VERNACULAIRES ET COMMERCIALES
Angola (et Allemagne) : Tola branca
Cameroon : Sinedon
Congo : Tola, Tola blanc
Gabon : Emolo
Nigeria (et Grande-Bretagne) : Agba, Otabo
République Démocratique du Congo : Ntola

DESCRIPTION DU BOIS

L'aubier est blanchâtre. Le bois parfait est beige clair jaunâtre et devient brun rosâtre plus ou moins foncé après exposition à la lumière et à l'air. La limite entre l'aubier et le bois parfait n'est pas toujours distincte. Par prudence, les propriétés des 2 à 3 cm de zone intermédiaire devront être considérées comme équivalentes à celles de l'aubier. Le fil est droit, parfois légèrement contrefilé ou ondé. Le grain est fin. L'odeur du Tola est légèrement poivrée à l'état frais. Les débits et placages peuvent présenter de petits nœuds épars ainsi que de petites taches de résine.

A la loupe (grossissement x 15), on peut observer des pores disséminés (4 à 8 par mm²), de taille moyenne (150 à 200 µ), isolés ou accolés radialement par 2 ou 3, du parenchyme de deux sortes, soit associé en manchon aux pores ou anastomosé entre pores et canaux voisins, soit non associé aux pores en lignes terminales continues, des rayons 1- à 4-sériés, au nombre de 5 à 8 par mm, de nombreux canaux sécréteurs à oléorésine (60 à 85 µ de diamètre), généralement dispersés parmi les pores.

PRINCIPALES PROPRIETES PHYSIQUES ET MECANIQUES

Le Tola est un bois très léger à léger, tendre, présentant des retraits linéaires faibles. Son retrait volumique est faible à moyen. Ses résistances mécaniques sont faibles.

Nota : les valeurs ci-après précédées d'un astérisque correspondent à un taux d'humidité du bois de 12 % (norme française NF B 51-002).

Masse volumique à l'état sec* : de 470 à 580 kg/m³
Densité basale : 0,44
Dureté Monnin* : 2,3
Point de saturation des fibres : 27 %
Retrait volumique total : 7,7 %
Retrait tangentiel total : 5,5 %
Retrait radial total : 2,4 %
Sensibilité aux variations d'humidité de l'air : moyennement importante
Stabilité en service : bois stable
Contrainte de rupture en compression parallèle* : 37 MPa
Contrainte de rupture en flexion statique* : 73 MPa
Module d'élasticité longitudinal* : 8 800 MPa

DURABILITÉ ET IMPREGNABILITÉ

RÉSISTANCE NATURELLE AUX CHAMPIGNONS
Le Tola présente une durabilité naturelle moyenne vis-à-vis des champignons de pourriture. Un traitement n'est pas nécessaire excepté dans tous les emplois où il est susceptible d'être en contact avec une source d'humidité occasionnelle. Cette essence est considérée comme durable à moyennement durable vis à vis des champignons lignivores (classe de durabilité : 2-3) selon la norme NF EN 350-1.

RÉSISTANCE NATURELLE AUX LYTUS
Le duramen est résistant aux Lyctus.

RÉSISTANCE NATURELLE AUX TERMITES
La durabilité du bois vis-à-vis des termites de l'espèce Reticulitermes santonensis est faible. Cette essence est considérée comme sensible aux termites (classe de durabilité : S) selon la norme NF EN 350-1.

IMPRÉGNABILITÉ
Cette essence est considérée comme peu imprégnable (classe d'imprégnabilité : 3) selon la norme NF EN 350-2.

CARACTERISTIQUES DE MISE EN OEUVRE

SCIAGE
Le Tola se scie très facilement. Le taux de silice contenu dans le bois peut être considéré comme négligeable (t < 0,05 %).

TRANCHE ET DÉROULAGE
Le Tola se déroule et se tranche sans difficulté. Le déroulage peut s'effectuer à froid, si le bois est frais de coupe ou après un étuvage doux (55 à 60°C). Les placages se séchent sans difficulté notable. Ils peuvent cependant présenter certaines ondulations mais les risques de fentes sont limités. Le collage des placages avec des colles de type urée-formol ou phénol-formol est satisfaisant.
La pression de collage conseillée pour la fabrication de contreplaqué est comprise entre 1 et 1,3 MPa selon la densité du bois. Au ponçage, la présence de résine peut provoquer l'encrassement des abrasifs. Les contreplaqués de Tola sont admis dans les spécifications techniques françaises de qualité pour une utilisation extérieure ou pour la fabrication de coffrages.
SÉCHAGE
Le Tola se sèche facilement et assez rapidement à l'air ; les risques de fentes et de déformations sont faibles. En séchoir artificiel (traditionnel ou par déshumidification), de essais ont montré que le Tola se sèche rapidement et facilement, sans difficulté particulière, les risques de fentes et de déformations étant minimes.

USINAGE
L’usinage du Tola ne présente pas de difficulté particulière, mais peut engendrer le dégagement de poussières irritantes.

ASSEMBLAGE
Le Tola se cloue et se visse facilement ; les risques de fentes sont très faibles. Les assemblages ont une bonne tenue mécanique. Les essais effectués avec des colles vinyliques ont donné des résultats satisfaisants ; d'une façon générale, le Tola se colle sans difficulté avec toutes les colles couramment employées dans l'industrie. L'utilisation de ce bois pour la fabrication de poutres lamellées-collées devrait s'avérer particulièrement intéressante (bois léger, moyennement durable, se séchant facilement).

FINITION
Le Tola se ponce facilement. Cependant la présence de résine dans l’aubier peut accélérer l’encrassement des bandes. Peintures, vernis et lasures peuvent être appliqués sans difficulté particulière.

CONCLUSIONS ET UTILISATIONS
Êtant donné sa durabilité moyenne, son aspect agréable et ses facilités de mise en œuvre (sciage, séchage, usinage) le Tola peut convenir dans de nombreux emplois, excepté ceux nécessitant des caractéristiques mécaniques très élevées. Il peut ainsi être utilisé pour la fabrication de :
- meubles
- moulures
- menuiseries intérieures
- lambris
- menuiseries extérieures (avec traitement)
- volets roulants
Du fait de la très bonne conformation des billes, le Tola convient bien pour la fabrication de placages tranchés décoratifs et de placages pour panneaux contreplaqués (structure, emballage, coffrage, décoration).
C - CONCLUSIONS ET PERSPECTIVES

Les descriptifs technologiques ont été établis pour cinquante des principales essences tropicales africaines qui sont (ou qui ont été) couramment commercialisées, ou qui présentent un intérêt technologique potentiel. Les caractéristiques d’autres essences auraient pu être présentées. Le choix établi ne revêt aucun caractère exhaustif et n’est pas indicateur d’une quelconque primauté des essences étudiées par rapport à celles qui n’ont pas été retenues.

Ces descriptifs sont autant de synthèses présentant des informations de base sur les principales caractéristiques technologiques des bois, sur leur comportement durant la mise en œuvre, ainsi que sur leurs utilisations potentielles. L’essentiel de ces données a été collecté durant des essais de caractérisation technologique réalisés dans les laboratoires du Programme Bois du CIRAD-Forêt (précédemment du Centre Technique Forestier Tropical).

Pour les caractéristiques physiques et mécaniques, les valeurs fournies correspondent à des moyennes par essence obtenues à partir d’un nombre variable de séries d’essais. Il est nécessaire de préciser que les propriétés des bois sont éminemment variables et que les valeurs moyennes indiquées ne constituent qu’un premier niveau d’information qui doit être complété si besoin est par d’autres paramètres (écart-type, quantiles particuliers) lors d’utilisations particulières (calculation de structure par exemple).

Pour la durabilité naturelle, un comportement moyen vis à vis des champignons de pourriture a été décrit sachant qu’une essence donnée peut avoir une résistance très variable selon la souche de champignon testée. De même, seule la résistance aux Lyctus, principal insecte attaquant les bois secs de feuillus en zone tempérée ou tropicale a été mentionnée.

Pour plus d’informations détaillées sur ces caractéristiques, il est nécessaire de consulter les documents référencés en bibliographie.

Les propriétés technologiques des bois de forêt naturelle sembleraient au premier abord constituer un caractère invariable propre à une espèce considérée. Ces propriétés risquent peu d’évoluer avec le temps, et la nature des informations mentionnées aujourd’hui dans un document technique sont similaires à celles qui apparaissaient dans le même type de produit documentaire rédigé il y a dix ou quinze ans. Cependant, des évolutions se sont produites durant ces dernières années, en relation avec les méthodes et les protocoles de caractérisation utilisés, mais aussi avec la nature même des essences mises sur le marché.

Dans un passé récent, certaines caractéristiques physiques ou mécaniques (résistance au fendage, à la traction perpendiculaire, etc, déterminées suivant un protocole normalisé) étaient encore couramment mesurées en routine, et les résultats obtenus figuraient dans les documents techniques destinés à faire connaître les bois étudiés. La connaissance de ces informations doit contribuer à prédict le comportement des bois durant leur transformation puis lors de leur mise en œuvre, et ainsi définir a priori les utilisations potentielles des essences étudiées liées à la qualité intrinsèque du bois.

Cependant, il est souvent apparu à l’usage que certaines de ces caractéristiques n’apportaient pas réellement d’informations pertinentes sur le futur comportement technologique du bois et devenaient, de ce fait, peu utiles pour les transformateurs ou les utilisateurs. En revanche, d’autres paramètres (fissilité, sensibilité aux variations d’humidité, etc) se sont révélés être de bien meilleurs indicateurs de l’aptitude d’un bois à développer certains défauts ou à poser certains problèmes particuliers. Ces paramètres doivent être étudiés et analysés plus systématiquement afin de pouvoir répondre de façon pertinente à la demande des industriels.

De même, à partir de certaines propriétés de base déterminées en laboratoire mais correspondant à des notions relativement obscures pour les non-spécialistes, de nouvelles variables qualitatives ou quantitatives directement utilisables par les opérateurs de la filière, ont été définies. Ainsi, la notion de couverture de
classe de risque biologique sans traitement de préservation est aujourd'hui utilisée de façon courante par les seconds transformateurs, les utilisateurs et les prescripteurs. Cette caractéristique qui fait le lien entre la qualité intrinsèque d’un bois et l’usage qui en est fait, est définie à partir de la connaissance de sa résistance naturelle à l’attaque d’agents biologiques de détérioration et de la définition de classes de durabilité naturelle. Cette connaissance doit être approfondie compte tenu de la demande croissante en essences tropicales à utiliser sans traitement en milieu exposé (emplois extérieurs et bois d’environnement).

Dans le domaine de la transformation et de la mise en œuvre des bois, dans des disciplines telles que le sciage, le séchage, l’usinage, la finition et le collage des bois, les transformateurs sont demandeurs d’informations et de conseils sur les paramètres qui permettraient d’optimiser ces opérations. Ces données ne sont disponibles (partiellement) que pour un nombre limité d’essences et l’étude des essences récemment (ou plus anciennement) mises sur le marché doit être poursuivie dans ce sens.

Les problèmes de compatibilité bois-produits de finition, la tenue dans le temps de ces produits (notamment en milieu extérieur), l’aptitude au collage de certaines essences réputées réfractaires (Doussié, Padouk, Teck ...) constituent autant de domaines qui nécessitent des investigations complémentaires, ceci d’autant plus que les caractéristiques et les performances de ces produits évoluent très rapidement en relation avec les exigences toujours plus élevées des transformateurs et des utilisateurs finaux.

Pour les emplois en milieu extérieur exposé, la compréhension et la maîtrise des facteurs déterminant l’instabilité de la couleur des bois avec le temps reste un problème de tout premier ordre pour les prescripteurs, les architectes et les spécialistes de la construction en bois. Une meilleure connaissance de ce phénomène et de ses déterminants permettrait d’élargir la gamme et les possibilités d’utilisation de nombreuses essences.

Certains bois comme l’Iroko sont couramment commercialisés et sont destinés à une large gamme d’utilisations. Ces essences de forêt naturelle ont été largement étudiées par le passé et semblaient actuellement parfaitement caractérisées. Cependant, pour une essence donnée, la provenance et la qualité des bois qui arrivent aujourd’hui sur le marché sont très différentes de celles des bois qui avaient été testés en laboratoire au cours des dernières décennies. Certaines des données disponibles sur ces bois ne sont plus fiables car ne correspondent pas au matériau aujourd’hui utilisé, souvent en raison de l’âge précoce d’exploitation du à la raréfaction de certaines espèces (entre autres Mansonia, Ovengkol ...) fréquemment exploitées à des diamètres inférieurs à 60cm. Pour ces essences, le lancement de nouvelles campagnes complètes de caractérisation serait justifié sachant que les moyens d’investigation disponibles aujourd’hui permettent d’alléger et d’accélérer les mesures tout en augmentant leur fiabilité.

Les évolutions relatives au comportement technologique et à la qualité des bois ont une incidence directe sur le comportement des opérateurs techniques et économiques et sur leur perception des bois tropicaux, de leurs usages effectifs ou potentiels, et de leur positionnement par rapport aux matériaux concurrents. Cette évolution pourrait induire des modifications en aval sur l’organisation des filières de production et les modes de commercialisation.

Actuellement, le commerce international des bois africains repose toujours sur une logique Essence fortement influencée par le courant traditionnel d’exportation des bois sous forme de grume. Depuis quelques années, une logique Fonction-Produit (structure, aménagements extérieurs, bois d’environnement, bois alimentaire-santé ...) régît de plus en plus souvent les stratégies d’approvisionnement des principaux industriels des pays du nord.

Cette modification de comportement doit constituer une opportunité pour faire évoluer les méthodes de prélèvement dans les ressources forestières à la faveur du renforcement de leur gestion durable. En particulier, cela devrait se traduire par un élargissement de la gamme d’essences prélevées puis
commercialisée, donc du choix de matériaux proposés suivant cette même logique.

Le développement de l’exploitation et de la mise sur le marché d’essences à commercialisation actuellement limitée peut être envisagée selon deux processus qui sont fonction de la ressource disponible et des équilibres à respecter dans les prélèvements : commercialisation individuelle (si ressource conséquente) suivant une logique *Essence*, ou par regroupement d’espèces (si faibles disponibilités) suivant la nouvelle logique *Fonction/Produit*. Un tel développement ne peut que contribuer à un rééquilibrage des prélèvements dans les ressources forestières naturelles et nécessite au préalable un renforcement de connaissances appropriées sur le comportement technologique des essences concernées.

Parallèlement, une bonne connaissance des contraintes techniques (liées aux spécificités des matériaux que constituent les bois tropicaux et des procédés de transformation correspondant) et commerciales (liées aux exigences des consommateurs intermédiaires et finaux) auxquelles sont soumis les opérateurs de la filière aval dans les pays industrialisés doit permettre d’aider à mieux formaliser la nature de leur demande en matériau-bois.
PRINCIPALES RÉFÉRENCES BIBLIOGRAPHIQUES UTILISÉES

Centre Technique Forestier Tropical : Fiches techniques “Promotion des bois tropicaux africains - Essences nouvelles. 35 fiches de 4 pages sur 10 essences africaines.

CIRAD-Forêt : Base de données sur les caractéristiques technologiques des bois tropicaux.

CIRAD-Forêt : Recueil de fiches technologiques et commerciales sur les bois tropicaux. 77 fiches.

CIRAD-Forêt : Présentation graphique des caractères technologiques des principaux bois tropicaux.
Tome I : Bois d’Afrique, 176p, 1983
Tome V : Bois de Madagascar, 161p, 1985
Tome VIII : Bois du Burundi, 40 p, 1989

FPRL (Forest Products Research Laboratory), Princes Risborough Laboratory : Handbook of Hardwoods (HMSO, 1972), 243p.

- 184 -

Norme française 51-002 (1942), Association Française de Normalisation (AFNOR).
Norme française 51-003 (1985), (AFNOR).
Norme française 51-004 (1985), (AFNOR).
Norme française 51-005 (1985), (AFNOR).
Norme française 51-007 (1985), (AFNOR).
Norme française 51-008 (1987), (AFNOR).
Norme Européenne, NF EN 113 (1996), AFNOR.
Norme Européenne, NF EN 350-1 (1994), AFNOR.
Norme Européenne, NF EN 350-2 (1994), AFNOR.
Document 1.

Document 2.

Document 3.

Document 4.
Bases pour une sylviculture en forêt dense tropicale humide africaine.

Document 5.
Quelques méthodes statistiques pour l’analyse des dispositifs forestiers.

Aménagement forestier en Guinée.

Document 7.
Le projet d’aménagement Pilote intégré de Dimako (Cameroun).

Document 8.
L’identification des finages villageois en zone forestière. Justification analyse et guide méthodologique.

Document 9.
Estimation de la qualité des arbres sur pied.

Document 10.
Les G.P.S. De l’acquisition des relevés à leur intégration dans un SIG.

Les bibliographies du CIRAD
Gestion des écosystèmes forestiers d’Afrique tropicale humide. 1. Gabon

Document 11.
Synthèse sur les caractéristiques technologiques de référence des principaux bois commerciaux africains.

Document 12.
Les cartes, la télédétection et les SIG, des outils pour la gestion et l’aménagement des forêts tropicales d’Afrique Centrale.

Le SIG, une aide pour tracer un réseau de pistes forestières. Méthodes et résultats.

Document 14.
Parcelles permanentes de recherche en forêt dense tropicale humide. Eléments pour une méthodologie d’analyse de données.

Document 15.
L’analyse de cernes : applications aux études de croissance de quelques essences en peuplements naturels de forêt dense africaine.

Document 16.
Dynamique et croissance de l’Okoumé en zone côtière du Gabon.

Document 17.
Les techniques d’exploitation à faible impact en forêt dense humide camerounaise.

Document 18.
Produits Forestiers Autres que le Bois d’œuvre (PFAB) : place dans l’aménagement durable des forêts denses humides d’Afrique Centrale.

Document 19.
L’aménagement forestier au Gabon – historique, bilan perspectives.

Document 20.
Croissance et productivité en forêt dense humide après incendie.